1.Effect of moxibustion on central insulin resistance related proteins in diabetic rats with cognitive decline.
Min YE ; Aihong YUAN ; Lele ZHANG ; Hongyu XIE ; Hudie SONG ; Yinqiu FAN ; Jun YANG
Chinese Acupuncture & Moxibustion 2025;45(2):185-192
OBJECTIVE:
To investigate the effect of moxibustion on central insulin resistance related proteins of the rats suffering from diabetic cognitive decline, and analyze the underlying mechanism of moxibustion for cognition improvement.
METHODS:
Using the intraperitoneal injection of STZ combined with a high-fat diet, the rat model of diabetic cognitive decline were prepared. Twenty successfully-modeled rats were assigned randomly into a model group and a moxibustion group, 10 rats in each one. Besides, a blank group was set up with 10 rats collected. In the moxibustion group, suspending moxibustion was applied to "Baihui" (GV20), "Shenting" (GV24) and "Dazhui" (GV14) at the same time, 20 min in each intervention, once a day, and 6 interventions were delivered weekly and the duration of treatment was consecutive 4 weeks. The random blood glucose was measured using glucometer, and the learning-memory ability was detected by water maze test. HE staining was used to observe the morphology of neurons in the hippocampal tissue, real-time PCR assay was to detect mRNA expression of insulin receptor substrate 1 (IRS1), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) in the hippocampal tissue. The Western blot method was employed to detect the protein expression of IRS1, PI3K, AKT, phosphorylated IRS1 (p-IRS1), phosphorylated PI3K (p-PI3K) and phosphorylated AKT (p-AKT) in the hippocampal tissue, and the ratio of p-IRS1/IRS1, p-PI3K/PI3K and p-AKT/AKT was calculated separately. The immunofluorescence intensity of p-IRS1, p-PI3K, and p-AKT was measured using immunofluorescence.
RESULTS:
Compared with the blank group, the rats of the model group exhibited higher random blood glucose (P<0.001), longer escape latency (P<0.001), severe pathological damage in the hippocampus, lower mRNA expression of IRS1, PI3K, and AKT (P<0.001), reduced ratio of p-IRS1/IRS1, p-PI3K/PI3K and p-AKT/AKT (P<0.001), and declined immunofluorescence intensity of p-IRS1, p-PI3K, and p-AKT in the hippocampal tissue (P<0.001). In comparison with the model group, for the rats of the moxibustion group, the random blood glucose decreased (P<0.05), the escape latency was shortened (P<0.01), the hippocampal pathological damage was attenuated, the mRNA expression of IRS1, PI3K and AKT increased (P<0.01), the ratio of p-IRS1/IRS1, p-PI3K/PI3K and p-AKT/AKT was elevated (P<0.01, P<0.05), and the immunofluorescence intensity of p-IRS1, p-PI3K, and p-AKT in the hippocampal tissue was strengthened (P<0.01, P<0.05).
CONCLUSION
In diabetic rats experiencing cognitive decline, moxibustion can enhance the learning-memory ability, which may be attributed to modulating the protein expression of IRS1, PI3K, and AKT, and their phosphorylation, activating insulin signal transduction, and reducing central insulin resistance.
Animals
;
Moxibustion
;
Insulin Resistance
;
Rats
;
Male
;
Insulin Receptor Substrate Proteins/genetics*
;
Rats, Sprague-Dawley
;
Humans
;
Proto-Oncogene Proteins c-akt/genetics*
;
Cognitive Dysfunction/genetics*
;
Diabetes Mellitus, Experimental/therapy*
;
Hippocampus/metabolism*
;
Acupuncture Points
;
Phosphatidylinositol 3-Kinases/genetics*
2.Mechanism of acupuncture for chronic blunt injury of lumbar muscle based on IGF-1/PI3K/AKT pathway.
Qun CHEN ; Dongmei WANG ; Zhengyu YANG ; Xiulian ZHENG ; Jianping LIN ; Shaoqing CHEN
Chinese Acupuncture & Moxibustion 2025;45(12):1759-1769
OBJECTIVE:
To explore the effect and mechanism of acupuncture at "Weizhong" (BL40) on microcirculation of paravertebral skeletal muscle in rats with chronic blunt injury of lumbar muscle based on the insulin-like growth factor-1 (IGF-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway.
METHODS:
Forty-eight SPF-grade SD rats were randomized into a blank group (8 rats) and a modeling group (40 rats). Chronic blunt injury model was established by weight impact method in the modeling group. Forty rats were successfully modeled, and were randomly divided into a model group, an acupuncture at Weizhong group (Weizhong group), an acupuncture at non-acupoint group (non-acupoint group), an inhibitor group, and an inhibitor+acupuncture at Weizhong group (inhibitor+Weizhong group), 8 rats in each group. In the Weizhong group and the inhibitor+Weizhong group, acupuncture was applied at bilateral "Weizhong" (BL40). In the non-acupoint group, acupuncture was applied at non-acupoints, i.e. points 0.5 cm inward from bilateral "Weizhong" (BL40). The acupuncture intervention was delivered 20 min each time, once a day for continuous 2 weeks. In the inhibitor group and the inhibitor+Weizhong group, intraperitoneal injection of IGF-1 receptor (IGF-1R) inhibitor was given once a day, at a dosage of 2 mg/100 g, for continuous 2 weeks. Before modeling and on the 1st, 7th and 14th days of intervention, the body mass was measured. Before and after modeling, and after intervention, the limb grip strength and paw withdrawal threshold (PWT) were measured. After intervention, the morphology of psoas muscle was observed by HE staining; the ultrastructure of psoas muscle capillaries was observed by electron microscopy; the levels of serum vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) were detected by ELISA; and the protein and mRNA expression of IGF-1, IGF-1R, PI3K, AKT of psoas muscle was detected by Western blot and real-time PCR.
RESULTS:
Compared with the blank group, in the model group, the body mass on the 7th and 14th days of intervention, the limb grip strength, and the PWT of left and right hind feet were decreased (P<0.001, P<0.01); the skeletal muscle cells showed enlarged intercellular space, loosely arranged and irregularly shaped, the capillaries in the psoas muscle tissues were edematous, and the lumen of the blood vessels was obviously atrophied; the levels of serum VEGF and eNOS were decreased (P<0.001); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K, p-AKT/AKT values were decreased (P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K and AKT was decreased (P<0.001, P<0.05). Compared with the model group, in the Weizhong group, the body weight was increased on the 7th and 14th days of intervention (P<0.001), the limb grip strength and the PWT of the left and right hind feet were increased (P<0.001, P<0.01); the arrangement of the skeletal muscle cells was relatively tight and the intercellular space was reduced, the blood vessels tended to be regular and the structure of the basement membrane was continuous, while the lumens of blood vessels were collapsed locally; the levels of serum VEGF and eNOS were increased (P<0.001); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K, p-AKT/AKT values were increased (P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K and AKT was increased (P<0.001, P<0.01). Compared with the model group, in the inhibitor group, the body mass was decreased on the 7th and 14th days of intervention (P<0.05, P<0.01); the limb grip strength and the PWT of the left hind foot were decreased (P<0.01, P<0.001); the intercellular space of skeletal muscle cells was larger, the nuclei of the cells and erythrocytes were scattered in the intercellular space, the damage of the capillaries in the muscular tissues was serious, the collagen fibers were sparsely distributed and disorganized; the levels of serum VEGF and eNOS were decreased (P<0.001, P<0.01); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K and p-AKT/AKT values were decreased (P<0.01, P<0.05, P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K, and AKT was decreased (P<0.01, P<0.001, P<0.05). Compared with the Weizhong group, in the non-acupoint group and the inhibitor+Weizhong group, the body mass was decreased on the 7th and 14th days of intervention (P<0.001, P<0.01), the limb grip strength was decreased (P<0.001); the morphology of muscle cell was relatively poor, with generally irregular, there was mild collapse and atrophy in the vascular lumen, and mild edema in the endothelial cells; the levels of serum VEGF and eNOS were decreased (P<0.001); in psoas muscle, the protein expression of IGF-1 and IGF-1R, as well as the p-PI3K/PI3K and p-AKT/AKT values were decreased (P<0.01, P<0.001), the mRNA expression of IGF-1, IGF-1R, PI3K, and AKT was decreased (P<0.001, P<0.01, P<0.05). Compared with the Weizhong group, the PWT of the left hind foot was decreased in the non-acupoint group (P<0.001), and PWT of the left and right hind feet was decreased in the inhibitor+Weizhong group (P<0.001).
CONCLUSION
Acupuncture at "Weizhong" (BL40) promotes lumbar muscle repair in chronic low back pain, its mechanism may be related to the activation of the IGF-1/PI3K/AKT pathway, thereby improving the microcirculation.
Animals
;
Insulin-Like Growth Factor I/genetics*
;
Acupuncture Therapy
;
Rats, Sprague-Dawley
;
Rats
;
Proto-Oncogene Proteins c-akt/genetics*
;
Male
;
Humans
;
Muscle, Skeletal/metabolism*
;
Signal Transduction
;
Phosphatidylinositol 3-Kinases/genetics*
;
Wounds, Nonpenetrating/metabolism*
;
Acupuncture Points
3.Research progress on the comorbidity mechanism of sarcopenia and obesity in the aging population.
Hao-Dong TIAN ; Yu-Kun LU ; Li HUANG ; Hao-Wei LIU ; Hang-Lin YU ; Jin-Long WU ; Han-Sen LI ; Li PENG
Acta Physiologica Sinica 2025;77(5):905-924
The increasing prevalence of aging has led to a rising incidence of comorbidity of sarcopenia and obesity, posing significant burdens on socioeconomic and public health. Current research has systematically explored the pathogenesis of each condition; however, the mechanisms underlying their comorbidity remain unclear. This study reviews the current literature on sarcopenia and obesity in the aging population, focusing on their shared biological mechanisms, which include loss of autophagy, abnormal macrophage function, mitochondrial dysfunction, and reduced sex hormone secretion. It also identifies metabolic mechanisms such as insulin resistance, vitamin D metabolism abnormalities, dysregulation of iron metabolism, decreased levels of nicotinamide adenine dinucleotide, and gut microbiota imbalances. Additionally, this study also explores the important role of genetic factors, such as alleles and microRNAs, in the co-occurrence of sarcopenia and obesity. A better understanding of these mechanisms is vital for developing clinical interventions and preventive strategies.
Humans
;
Sarcopenia/physiopathology*
;
Obesity/physiopathology*
;
Aging/physiology*
;
Autophagy/physiology*
;
Insulin Resistance
;
Comorbidity
;
Vitamin D/metabolism*
;
Gonadal Steroid Hormones/metabolism*
;
Gastrointestinal Microbiome
;
Mitochondria
;
MicroRNAs
4.Berberine promotes expression of AQP4 in astrocytes by regulating production of miR-383-5p in HepG2 cell-derived exosomes under insulin resistance.
Xue-Ling LIN ; Ying LI ; Meng-Qing GUO ; Yan-Jun ZHANG ; Qing-Sheng YIN ; Peng-Wei ZHUANG
China Journal of Chinese Materia Medica 2025;50(3):768-775
This study aims to explore the role and mechanism of berberine in promoting the expression of aquaporin 4(AQP4) in astrocytes by regulating the expression of miR-383-5p in HepG2 cell-derived exosomes under insulin resistance(IR). The IR-HepG2 cell model was established with 1×10~(-6) mol·L~(-1) insulin. With metformin as the positive control, the safe concentrations of berberine and metformin were screened by cell counting kit-8(CCK-8) and lactate dehydrogenase(LDH) leakage assays, and the effect of berberine on the IR of HepG2 cells was evaluated by glucose consumption. NanoSight was used to measure the particle size and concentration of exosomes secreted by HepG2 cells in each group. HepG2 cell-derived exosomes in each group were incubated with astrocytes for 24 h, and the protein and mRNA levels of AQP4 in HA1800 cells were determined by Western blot and qRT-PCR, respectively. qRT-PCR was performed to determine the expression of miR-383-5p in HepG2 cell-derived exosomes and HA1800 cells after co-incubation. Western blotting was employed to determine the expression levels of miRNAs and proteins associated with exosome production and release in HepG2 cells. The results showed that 10 μmol·L~(-1) berberine and 1 mmol·L~(-1) metformin significantly alleviated the IR of HepG2 cells and reduced the concentration of exosomes in HepG2 cells. The exosomes of HepG2 cells treated with berberine and metformin significantly up-regulated the protein and mRNA levels of AQP4 in HA1800 cells. The mRNA level of miR-383-5p in HepG2 cell exosomes and HA1800 cells co-incubated with berberine and metformin decreased significantly. The intervention with berberine and metformin significantly down-regulated the expression of proteins associated with the production of miRNAs(Dicer, Drosha) as well as the production(Alix, Vps4A) and release(Rab35, VAMP3) of exosomes in IR-HepG2 cells. In conclusion, berberine can promote the expression of AQP4 in astrocytes by inhibiting the production and release of miR-383-5p in HepG2-derived exosomes under IR.
Humans
;
MicroRNAs/metabolism*
;
Berberine/pharmacology*
;
Hep G2 Cells
;
Exosomes/genetics*
;
Aquaporin 4/metabolism*
;
Insulin Resistance
;
Astrocytes/drug effects*
5.Effect and mechanism of salt-processed Phellodendri Chinensis Cortex in improving insulin resistance based on network pharmacology and experimental verification.
Jin-Jie LEI ; Yang-Miao XIA ; Shang-Ling ZHAO ; Rui TAN ; Ling-Ying YU ; Zhi-Min CHEN
China Journal of Chinese Materia Medica 2025;50(9):2373-2381
This study explores the therapeutic differences and mechanisms of salt-processed Phellodendri Chinensis Cortex in improving insulin resistance(IR) based on network pharmacology, molecular docking, and cellular experiments. The components and intersection targets of Phellodendri Chinensis Cortex in improving IR were collected from databases, and a "drug-component-target-disease" network and protein-protein interaction(PPI) network were constructed to screen core components and targets. A total of 29 active components and 240 intersection targets were identified, of which 13 were core targets. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were used to identify key signaling pathways, and molecular docking was performed to validate the binding activity between core components and targets. An IR model in HepG2 cells was induced using insulin combined with high glucose, and the effects of Phellodendri Chinensis Cortex before and after salt-processing on cell glucose consumption were evaluated. The expression of proteins related to the mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT) signaling pathways was detected by Western blot. The cellular experimental results showed that, compared with the model group, glucose consumption in the drug-treated groups was significantly increased(P<0.01), the phosphorylation level of extracellular regulated protein kinase(ERK) was decreased(P<0.05), the phosphorylation levels of PI3K and AKT were increased, and the expression of glucose transporter 4(GLUT4) was also upregulated(P<0.05). Furthermore, the effect of salt-processed Phellodendri Chinensis Cortex was better than that of raw Phellodendri Chinensis Cortex. The study demonstrates that Phellodendri Chinensis Cortex, both before and after salt-processing, improves IR by regulating the expression of related proteins in the MAPK and PI3K-AKT signaling pathways, with enhanced effects after salt-processing.
Humans
;
Network Pharmacology
;
Phellodendron/chemistry*
;
Insulin Resistance
;
Drugs, Chinese Herbal/chemistry*
;
Hep G2 Cells
;
Signal Transduction/drug effects*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Glucose/metabolism*
6.Mechanism of Yuzhi Zhixue Granules in treating polycystic ovary syndrome with insulin resistance in rats via metabolomics and proteomics.
Cong-Hui ZHANG ; Hai-Xin XIANG ; Xiu-Wen WANG ; He XIAO ; Fang-Jiao WEI ; Jing-Chun YAO ; En-Li WANG
China Journal of Chinese Materia Medica 2025;50(12):3368-3376
Metabonomics and proteomics were employed to investigate the mechanism of Yuzhi Zhixue Granules in treating polycystic ovary syndrome with insulin resistance(PCOS-IR). The disease model was established by feeding a high-fat diet and gavage of letrozole solution and it was then treated with different doses of Yuzhi Zhixue Granules. The therapeutic effect of Yuzhi Zhixue Granules was evaluated based on the body mass, homeostasis model assessment of insulin resistance and insulin sensitivity index, serum levels of adipokines, and histopathological changes of rats. Metabolomics and proteomics were employed to find the action pathways of Yuzhi Zhixue Granules. The results showed that Yuzhi Zhixue Granules reduced the body mass, improved the insulin sensitivity and aromatase activity, improved the levels of leptin, adiponectin and other adipokines, and alleviated insulin resistance, histopathological changes, and metabolic disorders in PCOS-IR rats. Metabolomics results revealed 14 metabolites with altered levels in the ovarian tissue, which were closely related to glutathione metabolism and pyruvate metabolism. Proteomics results showed that the therapeutic effect of Yuzhi Zhixue Granules was mainly related to the adipokine, adenosine 5'-monophosphate(AMP)-activated protein kinase(AMPK), phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt), forkhead box protein O(FoxO), and mechanistic target of rapamycin(mTOR) signaling pathways. Western blot results showed that compared with the model group, Yuzhi Zhixue Granules treatment decreased the p-AMPK/AMPK and p-FoxO1/FoxO1 levels, increased the p-mTOR/mTOR level, and up-regulated the expression level of recombinant glucose transporter 4(GLUT4). Yuzhi Zhixue Granules can balance amino acid metabolism and pyruvate metabolism by regulating the AMPK/mTOR/FoxO/GLUT pathway to maintain the homeostasis of the ovarian environment and alleviate insulin resistance, thus treating PCOS-IR.
Animals
;
Female
;
Insulin Resistance
;
Polycystic Ovary Syndrome/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Metabolomics
;
Proteomics
;
Rats, Sprague-Dawley
;
Humans
;
Ovary/metabolism*
;
Signal Transduction/drug effects*
7.Mechanism of Qingrun Decoction in alleviating hepatic insulin resistance in type 2 diabetic rats based on amino acid metabolism reprogramming pathways.
Xiang-Wei BU ; Xiao-Hui HAO ; Run-Yun ZHANG ; Mei-Zhen ZHANG ; Ze WANG ; Hao-Shuo WANG ; Jie WANG ; Qing NI ; Lan LIN
China Journal of Chinese Materia Medica 2025;50(12):3377-3388
This study aims to investigate the mechanism of Qingrun Decoction in alleviating hepatic insulin resistance in type 2 diabetes mellitus(T2DM) rats through the reprogramming of amino acid metabolism. A T2DM rat model was established by inducing insulin resistance through a high-fat diet combined with intraperitoneal injection of streptozotocin. The model rats were randomly divided into five groups: model group, high-, medium-, and low-dose Qingrun Decoction groups, and metformin group. A normal control group was also established. The rats in the normal and model groups received 10 mL·kg~(-1) distilled water daily by gavage. The metformin group received 150 mg·kg~(-1) metformin suspension by gavage, and the Qingrun Decoction groups received 11.2, 5.6, and 2.8 g·kg~(-1) Qingrun Decoction by gavage for 8 weeks. Blood lipid levels were measured in different groups of rats. Pathological damage in rat liver tissue was assessed by hematoxylin-eosin(HE) staining and oil red O staining. Transcriptome sequencing and untargeted metabolomics were performed on rat liver and serum samples, integrated with bioinformatics analyses. Key metabolites(branched-chain amino acids, BCAAs), amino acid transporters, amino acid metabolites, critical enzymes for amino acid metabolism, resistin, adiponectin(ADPN), and mammalian target of rapamycin(mTOR) pathway-related molecules were quantified using quantitative real-time polymerase chain reaction(qRT-PCR), Western blot, and enzyme-linked immunosorbent assay(ELISA). The results showed that compared with the normal group, the model group had significantly increased serum levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), and resistin and significantly decreased ADPN levels. Hepatocytes in the model group exhibited loose arrangement, significant lipid accumulation, fatty degeneration, and pronounced inflammatory cell infiltration. In liver tissue, the mRNA transcriptional levels of solute carrier family 7 member 2(Slc7a2), solute carrier family 38 member 2(Slc38a2), solute carrier family 38 member 4(Slc38a4), and arginase(ARG) were significantly downregulated, while the mRNA transcriptional levels of solute carrier family 1 member 4(Slc1a4), solute carrier family 16 member 1(Slc16a1), and methionine adenosyltransferase(MAT) were upregulated. Furthermore, the mRNA transcription and protein expression levels of branched-chain α-keto acid dehydrogenase E1α(BCKDHA) and DEP domain-containing mTOR-interacting protein(DEPTOR) were downregulated, while mRNA transcription and protein expression levels of mTOR, as well as ribosomal protein S6 kinase 1(S6K1), were upregulated. The levels of BCAAs and S-adenosyl-L-methionine(SAM) were elevated. The serum level of 6-hydroxymelatonin was significantly reduced, while imidazole-4-one-5-propionic acid and N-(5-phospho-D-ribosyl)anthranilic acid levels were significantly increased. Compared with the model group, Qingrun Decoction significantly reduced blood lipid and resistin levels while increasing ADPN levels. Hepatocytes had improved morphology with reduced inflammatory cells, and fatty degeneration and lipid deposition were alleviated. Differentially expressed genes and differential metabolites were mainly enriched in amino acid metabolic pathways. The expression levels of Slc7a2, Slc38a2, Slc38a4, and ARG in the liver tissue were significantly upregulated, while Slc1a4, Slc16a1, and MAT expression levels were significantly downregulated. BCKDHA and DEPTOR expression levels were upregulated, while mTOR and S6K1 expression levels were downregulated. Additionally, the levels of BCAAs and SAM were significantly decreased. The serum level of 6-hydroxymelatonin was increased, while those of imidazole-4-one-5-propionic acid and N-(5-phospho-D-ribosyl)anthranilic acid were decreased. In summary, Qingrun Decoction may improve amino acid metabolism reprogramming, inhibit mTOR pathway activation, alleviate insulin resistance in the liver, and mitigate pathological damage of liver tissue in T2DM rats by downregulating hepatic BCAAs and SAM and regulating key enzymes involved in amino acid metabolism, such as BCKDHA, ARG, and MAT, as well as amino acid metabolites and transporters.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Insulin Resistance
;
Diabetes Mellitus, Type 2/genetics*
;
Male
;
Liver/drug effects*
;
Amino Acids/metabolism*
;
Rats, Sprague-Dawley
;
Humans
;
Metabolic Reprogramming
8.Mechanisms of puerarin-mediated lipid modulation to enhance glucose-lowering effects via hepatic ChREBP/PPARα/PPARγ in vitro.
Can CUI ; Han-Yue XIAO ; Li-Ke YAN ; Zhong-Hua XU ; Wei-Hua LIU ; Hui-Ping LI ; Jun TU
China Journal of Chinese Materia Medica 2025;50(14):3951-3961
This study aims to investigate the in vitro mechanisms underlying the beneficial effects of puerarin on hepatic insulin resistance(IR) based on the carbohydrate response element-binding protein(ChREBP)/peroxisome proliferator-activated receptor(PPAR)α/PPARγ axis involved in glucose and lipid metabolism. An IR-HepG2 cell model was established by treating cells with dexamethasone for 48 h, and the cells were then treated with 10, 20, and 40 μmol·L~(-1) puerarin for 24 h. Glucose levels and output in the extracellular fluid were measured by the glucose oxidase method, while cell viability was assessed by the cell counting kit-8(CCK-8) assay. The adenosine triphosphate(ATP) content and glycogen synthesis were evaluated through chemiluminescence and periodic acid-Schiff staining, respectively. Western blot was employed to quantify the protein levels of forkhead box protein O1(FoxO1), phosphorylated forkhead box protein O1 [p-FoxO1(Ser256)], glucagon, phosphofructokinase, liver type(PFKL), pyruvate kinase L-R(PKLR), pyruvate dehydrogenase complex 1(PDHA1), insulin receptor substrate 2(IRS2), phosphatidylinositol 3-kinase p85(PI3KR1), phosphorylated protein kinase B [p-Akt(Thr308)], glycogen synthase(GYS), glycogen phosphorylase, liver type(PYGL), adiponectin(ADPN), ChREBP, PPARα, and PPARγ. Additionally, the protein levels of acetyl-CoA carboxylase 1(ACC1), phosphorylated ATP citrate lyase [p-ACLY(Ser455)], sterol regulatory element binding protein 1c(SREBP-1c), peroxisome proliferator-activated receptor gamma coactivator 1α(PGC1α), carnitine palmitoyltransferase 1α(CPT1α), and glucagon receptor(GCGR) were also determined. Immunofluorescence was employed to visualize the expression and nuclear location of ChREBP/PPARα/PPARγ. Furthermore, quantitative PCR with the antagonists GW6471 and GW9662 was employed to assess Pparα, Pparγ, and Chrebp. The findings indicated that puerarin effectively reduced both the glucose level and glucose output in the extracellular fluid of IR-HepG2 cells without obvious effect on the cell viability, and it increased intracellular glycogen and ATP levels. Puerarin down-regulated the protein levels of FoxO1 and glucagon while up-regulating the protein levels of p-FoxO1(Ser256), PFKL, PKLR, PDHA1, IRS2, PI3KR1, p-Akt(Thr308), GYS, PYGL, ADPN, ACC1, SREBP-1c, p-ACLY(Ser455), PGC1α, CPT1α, and GCGR in IR-HepG2 cells. Furthermore, puerarin up-regulated both the mRNA and protein levels of ChREBP, PPARα, and PPARγ and promoted the translocation into the nucleus. GW6471 was observed to down-regulate the expression of Pparα while up-regulating the expression of Chrebp and Pparγ. GW9662 down-regulated the expression of Pparγ while up-regulating the expression of Pparα, with no significant effect on Chrebp. In summary, puerarin activated the hepatic ChREBP/PPARα/PPARγ axis, thereby coordinating the glucose and lipid metabolism, promoting the conversion of glucose to lipids to exert the blood glucose-lowering effect.
Isoflavones/pharmacology*
;
Humans
;
PPAR gamma/genetics*
;
Hep G2 Cells
;
Glucose/metabolism*
;
Lipid Metabolism/drug effects*
;
PPAR alpha/genetics*
;
Liver/drug effects*
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics*
;
Insulin Resistance
9.Correlation of IGF2 levels with sperm quality, inflammation, and DNA damage in infertile patients.
Jing-Gen WU ; Cai-Ping ZHOU ; Wei-Wei GUI ; Zhong-Yan LIANG ; Feng-Bin ZHANG ; Ying-Ge FU ; Rui LI ; Fang WU ; Xi-Hua LIN
Asian Journal of Andrology 2025;27(2):204-210
Insulin-like growth factor 2 (IGF2) is a critical endocrine mediator implicated in male reproductive physiology. To investigate the correlation between IGF2 protein levels and various aspects of male infertility, specifically focusing on sperm quality, inflammation, and DNA damage, a cohort of 320 male participants was recruited from the Women's Hospital, Zhejiang University School of Medicine (Hangzhou, China) between 1 st January 2024 and 1 st March 2024. The relationship between IGF2 protein concentrations and sperm parameters was assessed, and Spearman correlation and linear regression analysis were employed to evaluate the independent associations between IGF2 protein levels and risk factors for infertility. Enzyme-linked immunosorbent assay (ELISA) was used to measure IGF2 protein levels in seminal plasma, alongside markers of inflammation (tumor necrosis factor-alpha [TNF-α] and interleukin-1β [IL-1β]). The relationship between seminal plasma IGF2 protein levels and DNA damage marker phosphorylated histone H2AX (γ-H2AX) was also explored. Our findings reveal that IGF2 protein expression decreased notably in patients with asthenospermia and teratospermia. Correlation analysis revealed nuanced associations between IGF2 protein levels and specific sperm parameters, and low IGF2 protein concentrations correlated with increased inflammation and DNA damage in sperm. The observed correlations between IGF2 protein levels and specific sperm parameters, along with its connection to inflammation and DNA damage, underscore the importance of IGF2 in the broader context of male reproductive health. These findings lay the groundwork for future research and potential therapeutic interventions targeting IGF2-related pathways to enhance male fertility.
Humans
;
Male
;
Insulin-Like Growth Factor II/metabolism*
;
Infertility, Male/genetics*
;
DNA Damage
;
Adult
;
Inflammation/metabolism*
;
Spermatozoa/metabolism*
;
Semen Analysis
;
Semen/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Histones/metabolism*
;
Interleukin-1beta/metabolism*
10.Association between insulin resistance and uterine volume in girls with idiopathic central precocious puberty.
Hong-Ru ZHANG ; Ya XIAO ; Shu-Qin JIANG ; Jun SUN ; Wen-Hui SHI ; Jin-Bo LI ; Ying YANG ; Wei WANG
Chinese Journal of Contemporary Pediatrics 2025;27(4):404-409
OBJECTIVES:
To investigate the association between insulin resistance and uterine volume in girls with idiopathic central precocious puberty (ICPP).
METHODS:
A retrospective study was conducted involving 61 girls diagnosed with ICPP who visited the pediatric growth and development clinic of the Third Affiliated Hospital of Zhengzhou University between January 2022 and September 2024, designated as the ICPP group, and 61 normally developing girls as the control group. The differences in insulin resistance index (homeostasis model assessment of insulin resistance, HOMA-IR), uterine volume, and other indicators between the two groups were compared, and the relationship between insulin resistance and uterine volume in these girls was analyzed.
RESULTS:
The uterine volume and HOMA-IR level in the ICPP group were significantly higher than those in the control group (P<0.05). Correlation analysis revealed that there was a positive correlation between HOMA-IR level and uterine volume in the ICPP group (rs=0.643, P<0.001). Multiple linear regression analysis indicated that as HOMA-IR increased,uterine volume in the girls tended to increase (P<0.05).
CONCLUSIONS
There is an association between insulin resistance and uterine volume in girls with ICPP, and as HOMA-IR increases, uterine volume in the girls also increases.
Humans
;
Female
;
Insulin Resistance
;
Puberty, Precocious/metabolism*
;
Uterus/pathology*
;
Child
;
Retrospective Studies
;
Organ Size
;
Linear Models

Result Analysis
Print
Save
E-mail