1.Advances on relationship between insulin receptor substrate-1 and insulin resistance in liver cirrhosis.
Bing-quan CHEN ; Yan-feng ZHOU
Journal of Zhejiang University. Medical sciences 2012;41(3):339-344
Liver cirrhosis (LC) and insulin resistance (IR) are closely correlated, clinically presenting hyperglycemia, hyperinsulinism, hyperlipidemia and high cytokines levels, however, the underlying mechanism is not completely clear. Recent reports show that insulin receptor substrate-1 (IRS-1) is associated with IR in LC. IRS-1 plays a pivotal role on insulin signal transduction; it changes insulin signaling by up-or down-regulating of protein presentation, post-translational modification and subcellular localization of proteins, particularly in phosphorylation/dephosphorylation of post-translational modification. Furthermore, LC with different etiology may have different mechanism of IRS-1 effect on IR.
Humans
;
Insulin
;
metabolism
;
Insulin Receptor Substrate Proteins
;
metabolism
;
physiology
;
Insulin Resistance
;
Liver Cirrhosis
;
metabolism
2.MicroRNA and metabolism regulation.
Ming LI ; Huiqing XIE ; Wu XIONG ; Dan XU ; Ke CAO ; Rui LIU ; Jianda ZHOU ; Chengqun LUO
Journal of Central South University(Medical Sciences) 2013;38(3):318-322
MicroRNAs have been identified as a new class of regulatory molecules that affect many biological functions by interferring the target gene expressions. Latest studies demonstrate that microRNAs can influence many pivotal bio-processes and deeply involve in the metabolism of glucose, lipid and amino acid and biological oxidation. For glucose metabolism, microRNAs are related to insulin secretion, insulin sensitivity, glucose uptake, glycolysis, oxidation and mitochondrial function. For lipid matebolism, microRNAs can regulate the target genes related to lipid biosynthesis, catabolism and transportation. MicroRNAs can influence glutamine catabolism.
Animals
;
Glucose
;
metabolism
;
Glutamine
;
metabolism
;
Humans
;
Insulin
;
metabolism
;
Insulin Secretion
;
Lipid Metabolism
;
physiology
;
Metabolism
;
physiology
;
MicroRNAs
;
physiology
3.Lipid metabolic intermediates regulate skeletal muscle insulin sensitivity.
Acta Physiologica Sinica 2022;74(5):805-815
Skeletal muscle is the largest organ of human body, which completes 80%-90% of glucose intake stimulated by insulin, and is closely related to the occurrence and development of insulin resistance (IR). Skeletal muscle is one of the main places of lipid metabolism, and lipid metabolites participate in skeletal muscle metabolism as signal molecules. Fatty acids regulate skeletal muscle insulin sensitivity through insulin signaling pathway, inflammatory response and mitochondrial function. Saturated fatty acids (SFAs) induce insulin resistance by impairing insulin signal transduction, inducing mitochondrial dysfunction and inflammatory response, while unsaturated fatty acids reverse the adverse effects of SFAs and ameliorate IR by enhancing insulin signal transduction and anti-inflammatory effect. In addition, disorders of lipid metabolism in skeletal muscle cause accumulation of harmful metabolic intermediates, such as diacylglycerol, ceramide and long-chain acyl-coenzyme A, and induce IR by directly or indirectly damaging insulin signaling pathway. This article reviews the research progress of lipid metabolic intermediates regulating insulin sensitivity in skeletal muscle, which will help to better understand the pathogenesis of diabetes.
Humans
;
Insulin Resistance/physiology*
;
Muscle, Skeletal/metabolism*
;
Insulin/metabolism*
;
Lipid Metabolism
;
Fatty Acids/metabolism*
4.Advances in the study of mechanism of insulin in promoting wound healing.
Peilang YANG ; Xiong ZHANG ; Yan LIU
Chinese Journal of Burns 2014;30(4):356-359
Since its discovery in 1921, insulin has been considered to be the most important hormone in the regulation of glucose and fat metabolism. In recent years, studies have revealed that besides metabolism regulation, insulin can also act as a growth factor like hormone in regulating multiple processes and various cellular activities in the process of wound healing. This review summarizes the role of insulin in wound healing and its underlying mechanism.
Glucose
;
metabolism
;
Growth Hormone
;
metabolism
;
physiology
;
Humans
;
Insulin
;
physiology
;
Insulin-Like Growth Factor I
;
physiology
;
Insulin-Like Growth Factor II
;
physiology
;
Wound Healing
;
physiology
5.Molecular Mechanism of Insulin Resistance in Obesity and Type 2 Diabetes.
The Korean Journal of Internal Medicine 2010;25(2):119-129
Insulin resistance is a major risk factor for developing type 2 diabetes caused by the inability of insulin-target tissues to respond properly to insulin, and contributes to the morbidity of obesity. Insulin action involves a series of signaling cascades initiated by insulin binding to its receptor, eliciting receptor autophosphorylation and activation of the receptor tyrosine kinase, resulting in tyrosine phosphorylation of insulin receptor substrates (IRSs). Phosphorylation of IRSs leads to activation of phosphatidylinositol 3-kinase (PI3K) and, subsequently, to activation of Akt and its downstream mediator AS160, all of which are important steps for stimulating glucose transport induced by insulin. Although the mechanisms underlying insulin resistance are not completely understood in skeletal muscle, it is thought to result, at least in part, from impaired insulin-dependent PI3K activation and downstream signaling. This review focuses on the molecular basis of skeletal muscle insulin resistance in obesity and type 2 diabetes. In addition, the effects of insulin-sensitizing agent treatment and lifestyle intervention of human insulin-resistant subjects on insulin signaling cascade are discussed. Furthermore, the role of Rho-kinase, a newly identified regulator of insulin action in insulin control of metabolism, is addressed.
Blood Glucose/*metabolism
;
Diabetes Mellitus, Type 2/*metabolism
;
Humans
;
Insulin/metabolism
;
Insulin Resistance/*physiology
;
Obesity, Abdominal/*metabolism
;
Signal Transduction/physiology
6.Study on the mechanism of hepatocytic insulin signal transduction defects in severely scalded rats.
Bo ZHANG ; Linshui XU ; Weiling FU
Chinese Journal of Burns 2002;18(4):220-222
OBJECTIVETo investigate the mechanism of hepatocytic insulin signal transduction defects in severely scalded rats, so as to clarify the molecular basis of postburn insulin resistance.
METHODSWistar rats inflicted by 30% III degree scalding on the back were employed as the model. The rat hepatocytic insulin receptor was partially purified by wheat-germ agglutinin (WGA)-sepharose 4B affinity chromatography. The change of receptor tyrosine protein kinase (TPK) activity, the receptor beta-subunit autophosphorylation and the hepatocytic insulin receptor binding behavior of scalded rats during early stage of scalding were observed by means of insulin receptor binding test, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) autoradiography of phosphorylation of insulin receptor and phosphorylation of exogenous substrate.
RESULTSThere exhibited no evident changes of hepatocytic insulin receptor maximal binding capacity and affinity at 3 postburn days (PBDs) in scalded rats. The autophosphorylation capacity of the receptor beta-subunit decreased significantly. And the receptor TPK activity decreased obviously and its reaction to insulin stimulation decreased markedly.
CONCLUSIONThe defects of the insulin receptor signal transduction in hepatocyte leading to the post-receptor defects of insulin biological effects might be molecular mechanism of postburn insulin resistance.
Animals ; Burns ; metabolism ; pathology ; physiopathology ; Disease Models, Animal ; Hepatocytes ; metabolism ; Insulin ; physiology ; Insulin Resistance ; physiology ; Phosphorylation ; Rats ; Rats, Wistar ; Receptor, Insulin ; metabolism ; Signal Transduction ; physiology
7.Angiotensin II and insulin crosstalk in the cardiovascular system.
Journal of Central South University(Medical Sciences) 2006;31(6):797-808
Under normal physiology, insulin exerts vasodilatory and pro-survival actions via the phosphatidylinositol 3-kinase (PI3-kinase) pathway and vasoconstrictive and mitogenic actions via the mitogen-activated protein kinase (MAPK) pathway in the vasculature. In the insulin resistant states, insulin signals through the PI3-kinase pathway are blunted but its signals through the MAPK cascade remain intact. This imbalance predisposes insulin resistant patients to hypertension and atherosclerosis. The renin-angiotensin system (RAS) is expressed both systemically and locally in the cardiovascular system. Insulin resistance up-regulates the local RAS which contributes to the pathogenesis of hypertension, heart failure, and atherosclerosis. Angiotensin II impairs insulin signaling, induces inflammation via the NF-kappaB pathway, reduces nitric oxide availability and facilitates vasoconstriction, leading to insulin resistance and endothelial dysfunction. Thus the RAS, insulin resistance and inflammation perpetuate each other and coordinately contribute to endothelial dysfunction, vascular injury and atherosclerosis. RAS inhibition decreases cardiovascular and renal morbidity and mortality and the incidence of new onset Type 2 diabetes.
Angiotensin II
;
metabolism
;
physiology
;
Cardiovascular System
;
metabolism
;
Humans
;
Insulin
;
metabolism
;
physiology
8.Regulation of pancreatic beta-cell function by adipocytes.
Acta Physiologica Sinica 2007;59(3):247-252
Adipokines, the bioactive factors derived mainly from adipocytes, regulate pancreatic beta-cell function including insulin secretion, gene expression and apoptosis. In this review, we propose that adipokines influence beta-cell function through three interdependent pathways. The first is through regulating lipid and glucose metabolism in beta-cells. The second implicates the change of ion channel opening and closing in beta-cells. The third pathway is via the modification of insulin sensitivity of beta-cells. The endocrine function of adipocytes is dynamic, and the secretion of various adipokines changes under different metabolic conditions. During the progression from the normal state to obesity and to type 2 diabetes, adipokines contribute to the occurrence and development of beta-cell dysfunction in type 2 diabetes.
Adipocytes
;
physiology
;
Adiponectin
;
physiology
;
Animals
;
Diabetes Mellitus, Type 2
;
physiopathology
;
Glucose
;
metabolism
;
Humans
;
Insulin
;
pharmacology
;
Insulin-Secreting Cells
;
physiology
;
Leptin
;
physiology
;
Lipid Metabolism
9.Mechanism, treatment, and evaluation of obesity-induced insulin resistance and type 2 diabetes.
Acta Academiae Medicinae Sinicae 2010;32(1):7-12
Obesity is a major cause of insulin resistance and type 2 diabetes. The altered glucose homeostasis is caused by faulty insulin signal transduction, which results in decreased glucose uptake by the muscle, altered lipogenesis, and increased glucose output by the liver. The etiology of this derangement in insulin signaling is related to a chronic inflammatory state, leading to the induction of inducible nitric oxide synthase and release of high levels of nitric oxide and reactive nitrogen species, which together cause posttranslational modifications in the signaling proteins. There are substantial differences in the molecular mechanisms of insulin resistance in muscle versus liver. Hormones and cytokines from adipocytes can enhance or inhibit both glycemic sensing and insulin signaling. The role of the central nervous system in glucose homeostasis also has been well established. Multi-pronged therapies aimed at rectifying obesity induced anomalies in both central nervous system and peripheral tissues may prove to be beneficial. The golden standard method to evaluate the insulin sensitivity is hyperinsulinemic euglycemic clamp.
Diabetes Mellitus, Type 2
;
etiology
;
Glucose
;
metabolism
;
Humans
;
Insulin
;
metabolism
;
Insulin Resistance
;
physiology
;
Obesity
;
complications
;
metabolism
;
physiopathology
10.Obesity and Gastrointestinal Cancer-related Factor.
The Korean Journal of Gastroenterology 2012;59(1):8-15
Despite a higher incidence and less favorable outcome of malignant tumors in obese patients, much less recognized is the link between obesity and cancer. The mechanism of the association of obesity with carcinogenesis remains incompletely understood. Postulated mechanisms include insulin resistance, insulin-like growth factor signaling, chronic inflammation, immunomodulation, hyperglycemia-induced oxidative stress, and changes of intestinal microbiome. Insulin resistance leads to direct mitogenic and antiapoptotic signaling by insulin and the insulin-like growth factor axis. Obesity can be considered to be a state of chronic low-grade inflammation. In obesity, numerous proinflammatory cytokines are released from adipose tissue which may involve in carcinogenesis. Hyperglycemia in susceptible cells results in the overproduction of superoxide and this process is the key to initiating all damaging pathways related to diabetes. This hyperglycemia-induced oxidative stress could be one possible link among obesity, diabetes, and cancer development. The role of obesity-related changes in the intestinal microbiome in gastrointestinal carcinogenesis deserves further attention.
Adipokines/metabolism/physiology
;
Gastrointestinal Neoplasms/*etiology/microbiology
;
Humans
;
Inflammation/etiology
;
Insulin/metabolism/physiology
;
Leptin/metabolism/physiology
;
Obesity/*complications/immunology/metabolism
;
Oxidative Stress
;
Somatomedins/metabolism/physiology