1.Advances in the study of mechanism of insulin in promoting wound healing.
Peilang YANG ; Xiong ZHANG ; Yan LIU
Chinese Journal of Burns 2014;30(4):356-359
Since its discovery in 1921, insulin has been considered to be the most important hormone in the regulation of glucose and fat metabolism. In recent years, studies have revealed that besides metabolism regulation, insulin can also act as a growth factor like hormone in regulating multiple processes and various cellular activities in the process of wound healing. This review summarizes the role of insulin in wound healing and its underlying mechanism.
Glucose
;
metabolism
;
Growth Hormone
;
metabolism
;
physiology
;
Humans
;
Insulin
;
physiology
;
Insulin-Like Growth Factor I
;
physiology
;
Insulin-Like Growth Factor II
;
physiology
;
Wound Healing
;
physiology
2.Advances on relationship between insulin receptor substrate-1 and insulin resistance in liver cirrhosis.
Bing-quan CHEN ; Yan-feng ZHOU
Journal of Zhejiang University. Medical sciences 2012;41(3):339-344
Liver cirrhosis (LC) and insulin resistance (IR) are closely correlated, clinically presenting hyperglycemia, hyperinsulinism, hyperlipidemia and high cytokines levels, however, the underlying mechanism is not completely clear. Recent reports show that insulin receptor substrate-1 (IRS-1) is associated with IR in LC. IRS-1 plays a pivotal role on insulin signal transduction; it changes insulin signaling by up-or down-regulating of protein presentation, post-translational modification and subcellular localization of proteins, particularly in phosphorylation/dephosphorylation of post-translational modification. Furthermore, LC with different etiology may have different mechanism of IRS-1 effect on IR.
Humans
;
Insulin
;
metabolism
;
Insulin Receptor Substrate Proteins
;
metabolism
;
physiology
;
Insulin Resistance
;
Liver Cirrhosis
;
metabolism
3.Research advance in child anorexia and appetite regulation.
Chinese Journal of Contemporary Pediatrics 2010;12(1):78-81
Animals
;
Anorexia
;
etiology
;
Appetite
;
physiology
;
Cholecystokinin
;
physiology
;
Digestion
;
Glucagon-Like Peptide 1
;
physiology
;
Humans
;
Hypothalamus
;
physiology
;
Insulin
;
physiology
;
Norepinephrine
;
physiology
4.MicroRNA and metabolism regulation.
Ming LI ; Huiqing XIE ; Wu XIONG ; Dan XU ; Ke CAO ; Rui LIU ; Jianda ZHOU ; Chengqun LUO
Journal of Central South University(Medical Sciences) 2013;38(3):318-322
MicroRNAs have been identified as a new class of regulatory molecules that affect many biological functions by interferring the target gene expressions. Latest studies demonstrate that microRNAs can influence many pivotal bio-processes and deeply involve in the metabolism of glucose, lipid and amino acid and biological oxidation. For glucose metabolism, microRNAs are related to insulin secretion, insulin sensitivity, glucose uptake, glycolysis, oxidation and mitochondrial function. For lipid matebolism, microRNAs can regulate the target genes related to lipid biosynthesis, catabolism and transportation. MicroRNAs can influence glutamine catabolism.
Animals
;
Glucose
;
metabolism
;
Glutamine
;
metabolism
;
Humans
;
Insulin
;
metabolism
;
Insulin Secretion
;
Lipid Metabolism
;
physiology
;
Metabolism
;
physiology
;
MicroRNAs
;
physiology
5.Progress on relationship between exercise improving insulin resistance and AMP-activated protein kinase.
Acta Physiologica Sinica 2014;66(2):231-240
The AMP-activated protein kinase (AMPK) widely exists in skeletal muscle, liver, pancreas, adipose tissue and central nervous system. As a "cellular energy regulator", activation of AMPK can improve insulin resistance in various mechanisms. To overall understand the importance of AMPK in exercise, the article summarized the research progress on AMPK exercise activation in skeletal muscle, liver and adipose tissue as well as exercise improving cardiovascular insulin resistance by AMPK, and looked forward to the study future of AMPK exercise activation.
AMP-Activated Protein Kinases
;
physiology
;
Adipose Tissue
;
physiology
;
Exercise
;
physiology
;
Humans
;
Insulin Resistance
;
Liver
;
physiology
;
Muscle, Skeletal
;
physiology
6.Study on the mechanism of hepatocytic insulin signal transduction defects in severely scalded rats.
Bo ZHANG ; Linshui XU ; Weiling FU
Chinese Journal of Burns 2002;18(4):220-222
OBJECTIVETo investigate the mechanism of hepatocytic insulin signal transduction defects in severely scalded rats, so as to clarify the molecular basis of postburn insulin resistance.
METHODSWistar rats inflicted by 30% III degree scalding on the back were employed as the model. The rat hepatocytic insulin receptor was partially purified by wheat-germ agglutinin (WGA)-sepharose 4B affinity chromatography. The change of receptor tyrosine protein kinase (TPK) activity, the receptor beta-subunit autophosphorylation and the hepatocytic insulin receptor binding behavior of scalded rats during early stage of scalding were observed by means of insulin receptor binding test, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) autoradiography of phosphorylation of insulin receptor and phosphorylation of exogenous substrate.
RESULTSThere exhibited no evident changes of hepatocytic insulin receptor maximal binding capacity and affinity at 3 postburn days (PBDs) in scalded rats. The autophosphorylation capacity of the receptor beta-subunit decreased significantly. And the receptor TPK activity decreased obviously and its reaction to insulin stimulation decreased markedly.
CONCLUSIONThe defects of the insulin receptor signal transduction in hepatocyte leading to the post-receptor defects of insulin biological effects might be molecular mechanism of postburn insulin resistance.
Animals ; Burns ; metabolism ; pathology ; physiopathology ; Disease Models, Animal ; Hepatocytes ; metabolism ; Insulin ; physiology ; Insulin Resistance ; physiology ; Phosphorylation ; Rats ; Rats, Wistar ; Receptor, Insulin ; metabolism ; Signal Transduction ; physiology
7.Roles and mechanism of microRNAs in the regulation of skeletal muscle insulin resistance.
Li-Fang ZHENG ; Pei-Jie CHEN ; Wei-Hua XIAO
Acta Physiologica Sinica 2019;71(3):497-504
Insulin resistance is a common pathophysiological mechanism of obesity and type 2 diabetes mellitus. Skeletal muscle is one of the major target organs of insulin-mediated glucose uptake, metabolism and utilization, and it is the earliest and most important site of insulin resistance. Studies have shown that the impairments of glucose uptake, insulin signaling pathway and mitochondrial biosynthesis are closely related to skeletal muscle insulin resistance. When insulin resistance develops in skeletal muscle, multiple microRNAs (miRNAs) are up-regulated (miR-106b, miR-23a, miR-761, miR-135a, Let-7 and miR-29a) or down-regulated (miR-133a, miR-149 and miR-1). They participate in the regulation of skeletal muscle glucose uptake, insulin signaling pathway and mitochondrial biogenesis, and thus play important roles in the occurrence and development of skeletal muscle insulin resistance. Therefore, these miRNAs may serve as potential targets for the treatment of skeletal muscle insulin resistance or diabetes.
Diabetes Mellitus, Type 2
;
Humans
;
Insulin
;
Insulin Resistance
;
MicroRNAs
;
genetics
;
Muscle, Skeletal
;
physiology
8.Lipid metabolic intermediates regulate skeletal muscle insulin sensitivity.
Acta Physiologica Sinica 2022;74(5):805-815
Skeletal muscle is the largest organ of human body, which completes 80%-90% of glucose intake stimulated by insulin, and is closely related to the occurrence and development of insulin resistance (IR). Skeletal muscle is one of the main places of lipid metabolism, and lipid metabolites participate in skeletal muscle metabolism as signal molecules. Fatty acids regulate skeletal muscle insulin sensitivity through insulin signaling pathway, inflammatory response and mitochondrial function. Saturated fatty acids (SFAs) induce insulin resistance by impairing insulin signal transduction, inducing mitochondrial dysfunction and inflammatory response, while unsaturated fatty acids reverse the adverse effects of SFAs and ameliorate IR by enhancing insulin signal transduction and anti-inflammatory effect. In addition, disorders of lipid metabolism in skeletal muscle cause accumulation of harmful metabolic intermediates, such as diacylglycerol, ceramide and long-chain acyl-coenzyme A, and induce IR by directly or indirectly damaging insulin signaling pathway. This article reviews the research progress of lipid metabolic intermediates regulating insulin sensitivity in skeletal muscle, which will help to better understand the pathogenesis of diabetes.
Humans
;
Insulin Resistance/physiology*
;
Muscle, Skeletal/metabolism*
;
Insulin/metabolism*
;
Lipid Metabolism
;
Fatty Acids/metabolism*
9.Molecular Mechanism of Insulin Resistance in Obesity and Type 2 Diabetes.
The Korean Journal of Internal Medicine 2010;25(2):119-129
Insulin resistance is a major risk factor for developing type 2 diabetes caused by the inability of insulin-target tissues to respond properly to insulin, and contributes to the morbidity of obesity. Insulin action involves a series of signaling cascades initiated by insulin binding to its receptor, eliciting receptor autophosphorylation and activation of the receptor tyrosine kinase, resulting in tyrosine phosphorylation of insulin receptor substrates (IRSs). Phosphorylation of IRSs leads to activation of phosphatidylinositol 3-kinase (PI3K) and, subsequently, to activation of Akt and its downstream mediator AS160, all of which are important steps for stimulating glucose transport induced by insulin. Although the mechanisms underlying insulin resistance are not completely understood in skeletal muscle, it is thought to result, at least in part, from impaired insulin-dependent PI3K activation and downstream signaling. This review focuses on the molecular basis of skeletal muscle insulin resistance in obesity and type 2 diabetes. In addition, the effects of insulin-sensitizing agent treatment and lifestyle intervention of human insulin-resistant subjects on insulin signaling cascade are discussed. Furthermore, the role of Rho-kinase, a newly identified regulator of insulin action in insulin control of metabolism, is addressed.
Blood Glucose/*metabolism
;
Diabetes Mellitus, Type 2/*metabolism
;
Humans
;
Insulin/metabolism
;
Insulin Resistance/*physiology
;
Obesity, Abdominal/*metabolism
;
Signal Transduction/physiology