1.The mutual interaction of TRPC5 channel with polycystin proteins
Misun KWAK ; Hana KANG ; Jinhyeong KIM ; Yejun HONG ; Byeongseok JEONG ; Jongyun MYEONG ; Insuk SO
The Korean Journal of Physiology and Pharmacology 2025;29(1):93-108
PKD1 regulates a number of cellular processes through the formation of complexes with the PKD2 ion channel or transient receptor potential classical (TRPC) 4 in the endothelial cells. Although Ca 2+ modulation by polycystins has been reported between PKD1 and TRPC4 channel or TRPC1 and PKD2, the function with TRPC subfamily regulated by PKD2 has remained elusive. We confirmed TRPC4 or TRPC5 channel activation via PKD1 by modulating G-protein signaling without change in TRPC4/C5 translocation. The activation of TRPC4/C5 channels by intracellular 0.2 mM GTPγS was not significantly different regardless of the presence or absence of PKD1. Furthermore, the C-terminal fragment (CTF) of PKD1 did not affect TRPC4/C5 activity, likely due to the loss of the N-terminus that contains the G-protein coupled receptor proteolytic site (GPS). We also investigated whether TRPC1/C4/C5 can form a heterodimeric channel with PKD2, despite PKD2 being primarily retained in the endoplasmic reticulum (ER). Our findings show that PKD2 is targeted to the plasma membrane, particularly by TRPC5, but not by TRPC1. However, PKD2 did not coimmunoprecipitate with TRPC5 as well as with TRPC1. PKD2 decreased both basal and La 3+ -induced TRPC5 currents but increased M 3 R-mediated TRPC5 currents. Interestingly, PKD2 increased STAT3 phosphorylation with TRPC5 and decreased STAT1 phosphorylation with TRPC1. To be specific, PKD2 and TRPC1 compete to bind with TRPC5 to modulate intracellular Ca 2+ signaling and reach the plasma membrane. This interaction suggests a new therapeutic target in TRPC5 channels for improving vascular endothelial function in polycystic kidney disease.
2.The mutual interaction of TRPC5 channel with polycystin proteins
Misun KWAK ; Hana KANG ; Jinhyeong KIM ; Yejun HONG ; Byeongseok JEONG ; Jongyun MYEONG ; Insuk SO
The Korean Journal of Physiology and Pharmacology 2025;29(1):93-108
PKD1 regulates a number of cellular processes through the formation of complexes with the PKD2 ion channel or transient receptor potential classical (TRPC) 4 in the endothelial cells. Although Ca 2+ modulation by polycystins has been reported between PKD1 and TRPC4 channel or TRPC1 and PKD2, the function with TRPC subfamily regulated by PKD2 has remained elusive. We confirmed TRPC4 or TRPC5 channel activation via PKD1 by modulating G-protein signaling without change in TRPC4/C5 translocation. The activation of TRPC4/C5 channels by intracellular 0.2 mM GTPγS was not significantly different regardless of the presence or absence of PKD1. Furthermore, the C-terminal fragment (CTF) of PKD1 did not affect TRPC4/C5 activity, likely due to the loss of the N-terminus that contains the G-protein coupled receptor proteolytic site (GPS). We also investigated whether TRPC1/C4/C5 can form a heterodimeric channel with PKD2, despite PKD2 being primarily retained in the endoplasmic reticulum (ER). Our findings show that PKD2 is targeted to the plasma membrane, particularly by TRPC5, but not by TRPC1. However, PKD2 did not coimmunoprecipitate with TRPC5 as well as with TRPC1. PKD2 decreased both basal and La 3+ -induced TRPC5 currents but increased M 3 R-mediated TRPC5 currents. Interestingly, PKD2 increased STAT3 phosphorylation with TRPC5 and decreased STAT1 phosphorylation with TRPC1. To be specific, PKD2 and TRPC1 compete to bind with TRPC5 to modulate intracellular Ca 2+ signaling and reach the plasma membrane. This interaction suggests a new therapeutic target in TRPC5 channels for improving vascular endothelial function in polycystic kidney disease.
3.The mutual interaction of TRPC5 channel with polycystin proteins
Misun KWAK ; Hana KANG ; Jinhyeong KIM ; Yejun HONG ; Byeongseok JEONG ; Jongyun MYEONG ; Insuk SO
The Korean Journal of Physiology and Pharmacology 2025;29(1):93-108
PKD1 regulates a number of cellular processes through the formation of complexes with the PKD2 ion channel or transient receptor potential classical (TRPC) 4 in the endothelial cells. Although Ca 2+ modulation by polycystins has been reported between PKD1 and TRPC4 channel or TRPC1 and PKD2, the function with TRPC subfamily regulated by PKD2 has remained elusive. We confirmed TRPC4 or TRPC5 channel activation via PKD1 by modulating G-protein signaling without change in TRPC4/C5 translocation. The activation of TRPC4/C5 channels by intracellular 0.2 mM GTPγS was not significantly different regardless of the presence or absence of PKD1. Furthermore, the C-terminal fragment (CTF) of PKD1 did not affect TRPC4/C5 activity, likely due to the loss of the N-terminus that contains the G-protein coupled receptor proteolytic site (GPS). We also investigated whether TRPC1/C4/C5 can form a heterodimeric channel with PKD2, despite PKD2 being primarily retained in the endoplasmic reticulum (ER). Our findings show that PKD2 is targeted to the plasma membrane, particularly by TRPC5, but not by TRPC1. However, PKD2 did not coimmunoprecipitate with TRPC5 as well as with TRPC1. PKD2 decreased both basal and La 3+ -induced TRPC5 currents but increased M 3 R-mediated TRPC5 currents. Interestingly, PKD2 increased STAT3 phosphorylation with TRPC5 and decreased STAT1 phosphorylation with TRPC1. To be specific, PKD2 and TRPC1 compete to bind with TRPC5 to modulate intracellular Ca 2+ signaling and reach the plasma membrane. This interaction suggests a new therapeutic target in TRPC5 channels for improving vascular endothelial function in polycystic kidney disease.
4.The mutual interaction of TRPC5 channel with polycystin proteins
Misun KWAK ; Hana KANG ; Jinhyeong KIM ; Yejun HONG ; Byeongseok JEONG ; Jongyun MYEONG ; Insuk SO
The Korean Journal of Physiology and Pharmacology 2025;29(1):93-108
PKD1 regulates a number of cellular processes through the formation of complexes with the PKD2 ion channel or transient receptor potential classical (TRPC) 4 in the endothelial cells. Although Ca 2+ modulation by polycystins has been reported between PKD1 and TRPC4 channel or TRPC1 and PKD2, the function with TRPC subfamily regulated by PKD2 has remained elusive. We confirmed TRPC4 or TRPC5 channel activation via PKD1 by modulating G-protein signaling without change in TRPC4/C5 translocation. The activation of TRPC4/C5 channels by intracellular 0.2 mM GTPγS was not significantly different regardless of the presence or absence of PKD1. Furthermore, the C-terminal fragment (CTF) of PKD1 did not affect TRPC4/C5 activity, likely due to the loss of the N-terminus that contains the G-protein coupled receptor proteolytic site (GPS). We also investigated whether TRPC1/C4/C5 can form a heterodimeric channel with PKD2, despite PKD2 being primarily retained in the endoplasmic reticulum (ER). Our findings show that PKD2 is targeted to the plasma membrane, particularly by TRPC5, but not by TRPC1. However, PKD2 did not coimmunoprecipitate with TRPC5 as well as with TRPC1. PKD2 decreased both basal and La 3+ -induced TRPC5 currents but increased M 3 R-mediated TRPC5 currents. Interestingly, PKD2 increased STAT3 phosphorylation with TRPC5 and decreased STAT1 phosphorylation with TRPC1. To be specific, PKD2 and TRPC1 compete to bind with TRPC5 to modulate intracellular Ca 2+ signaling and reach the plasma membrane. This interaction suggests a new therapeutic target in TRPC5 channels for improving vascular endothelial function in polycystic kidney disease.
5.The mutual interaction of TRPC5 channel with polycystin proteins
Misun KWAK ; Hana KANG ; Jinhyeong KIM ; Yejun HONG ; Byeongseok JEONG ; Jongyun MYEONG ; Insuk SO
The Korean Journal of Physiology and Pharmacology 2025;29(1):93-108
PKD1 regulates a number of cellular processes through the formation of complexes with the PKD2 ion channel or transient receptor potential classical (TRPC) 4 in the endothelial cells. Although Ca 2+ modulation by polycystins has been reported between PKD1 and TRPC4 channel or TRPC1 and PKD2, the function with TRPC subfamily regulated by PKD2 has remained elusive. We confirmed TRPC4 or TRPC5 channel activation via PKD1 by modulating G-protein signaling without change in TRPC4/C5 translocation. The activation of TRPC4/C5 channels by intracellular 0.2 mM GTPγS was not significantly different regardless of the presence or absence of PKD1. Furthermore, the C-terminal fragment (CTF) of PKD1 did not affect TRPC4/C5 activity, likely due to the loss of the N-terminus that contains the G-protein coupled receptor proteolytic site (GPS). We also investigated whether TRPC1/C4/C5 can form a heterodimeric channel with PKD2, despite PKD2 being primarily retained in the endoplasmic reticulum (ER). Our findings show that PKD2 is targeted to the plasma membrane, particularly by TRPC5, but not by TRPC1. However, PKD2 did not coimmunoprecipitate with TRPC5 as well as with TRPC1. PKD2 decreased both basal and La 3+ -induced TRPC5 currents but increased M 3 R-mediated TRPC5 currents. Interestingly, PKD2 increased STAT3 phosphorylation with TRPC5 and decreased STAT1 phosphorylation with TRPC1. To be specific, PKD2 and TRPC1 compete to bind with TRPC5 to modulate intracellular Ca 2+ signaling and reach the plasma membrane. This interaction suggests a new therapeutic target in TRPC5 channels for improving vascular endothelial function in polycystic kidney disease.
6.Negative self-regulation of transient receptor potential canonical 4 by the specific interaction with phospholipase C-δ1
Juyeon KO ; Jinhyeong KIM ; Jongyun MYEONG ; Misun KWAK ; Insuk SO
The Korean Journal of Physiology and Pharmacology 2023;27(2):187-196
Transient receptor potential canonical (TRPC) channels are non-selective calcium-permeable cation channels. It is suggested that TRPC4β is regulated by phospholipase C (PLC) signaling and is especially maintained by phosphatidylinositol 4,5-bisphosphate (PIP2 ). In this study, we present the regulation mechanism of the TRPC4 channel with PIP2 hydrolysis which is mediated by a channel-bound PLCδ1 but not by the GqPCR signaling pathway. Our electrophysiological recordings demonstrate that the Ca2+ via an open TRPC4 channel activates PLCδ1 in the physiological range, and it causes the decrease of current amplitude. The existence of PLCδ1 accelerated PIP2 depletion when the channel was activated by an agonist. Interestingly, PLCδ1 mutants which have lost the ability to regulate PIP2 level failed to reduce the TRPC4 current amplitude. Our results demonstrate that TRPC4 self-regulates its activity by allowing Ca2+ ions into the cell and promoting the PIP2 hydrolyzing activity of PLCδ1.
7.Distribution and Function of Platelet-derived Growth Factor Receptor Alpha-positive Cells and Purinergic Neurotransmission in the Human Colon: Is It Different Between the Right and Left Colon?
Kil-yong LEE ; Tae Sik SUNG ; Byoung H KOH ; Seung-Bum RYOO ; Jung Nyeo CHUN ; Shin-Hye KIM ; Kyu Joo PARK ; Insuk SO
Journal of Neurogastroenterology and Motility 2022;28(4):678-692
Background/Aims:
Platelet-derived growth factor receptor alpha-positive (PDGFRα + ) cells function in the purinergic regulation of gastrointestinal motility, and purines are reportedly inhibitory neurotransmitters in the enteric nervous system. We explore the distribution and function of PDGFRα + cells related to purinergic inhibitory neurotransmission in human right and left colons.
Methods:
Human colonic segments were prepared with mucosa and submucosa intact, and the circular muscle tension and longitudinal muscle tension were recorded. Purinergic neurotransmitters were administered after recording the regular contractions.Immunohistochemistry was performed on the circular muscle layers. Intracellular recording was performed on the colonic muscular layer. SK3, P2RY1, and PDGFR-α mRNA expression was tested by quantitative real-time polymerase chain reaction (qPCR).
Results:
Adenosine triphosphate (ATP) treatment significantly decreased the frequency and area under the curve (AUC) of the segmental contraction in right and left colons. Beta-nicotinamide adenine dinucleotide (β-NAD) decreased the frequency in the right colon and the amplitude, frequency and AUC in the left colon. Apamin significantly increased frequency and AUC in the left colon, and after apamin pretreatment, ATP and β-NAD did not change segmental contractility. Through intracellular recordings, a resting membrane potential decrease occurred after ATP administration; however, the degree of decrease between the right and left colon was not different. PDGFRα +Conclusion
Purines reduce right and left colon contractility similarly, and purinergic inhibitory neurotransmission can be regulated by PDGFRα+ cells in the human colon.
8.Analysis of interaction between intracellular spermine and transient receptor potential canonical 4 channel: multiple candidate sites of negatively charged amino acids for the inward rectification of transient receptor potential canonical 4
Jinsung KIM ; Sang Hui MOON ; Taewook KIM ; Juyeon KO ; Young Keul JEON ; Young Cheul SHIN ; Ju Hong JEON ; Insuk SO
The Korean Journal of Physiology and Pharmacology 2020;24(1):101-110
Transient receptor potential canonical 4 (TRPC4) channel is a nonselective calcium-permeable cation channels. In intestinal smooth muscle cells, TRPC4 currents contribute more than 80% to muscarinic cationic current (mIcat). With its inward-rectifying current-voltage relationship and high calcium permeability, TRPC4 channels permit calcium influx once the channel is opened by muscarinic receptor stimulation. Polyamines are known to inhibit nonselective cation channels that mediate the generation of mIcat. Moreover, it is reported that TRPC4 channels are blocked by the intracellular spermine through electrostatic interaction with glutamate residues (E728, E729). Here, we investigated the correlation between the magnitude of channel inactivation by spermine and the magnitude of channel conductance. We also found additional spermine binding sites in TRPC4. We evaluated channel activity with electrophysiological recordings and revalidated structural significance based on Cryo-EM structure, which was resolved recently. We found that there is no correlation between magnitude of inhibitory action of spermine and magnitude of maximum current of the channel. In intracellular region, TRPC4 attracts spermine at channel periphery by reducing access resistance, and acidic residues contribute to blocking action of intracellular spermine; channel periphery, E649; cytosolic space, D629, D649, and E687.
Amino Acids
;
Binding Sites
;
Calcium
;
Cytosol
;
Glutamic Acid
;
Myocytes, Smooth Muscle
;
Permeability
;
Polyamines
;
Receptors, Muscarinic
;
Spermine
;
Transient Receptor Potential Channels
9.Ca2+/calmodulin-dependent regulation of polycystic kidney disease 2-like-1 by binding at C-terminal domain
Julia Young BAIK ; Eunice Yon June PARK ; Insuk SO
The Korean Journal of Physiology and Pharmacology 2020;24(3):277-286
Polycystic kidney disease 2-like-1 (PKD2L1), also known as polycystin- L or TRPP3, is a non-selective cation channel that regulates intracellular calcium concentration. Calmodulin (CaM) is a calcium binding protein, consisting of N-lobe and C-lobe with two calcium binding EF-hands in each lobe. In previous study, we confirmed that CaM is associated with desensitization of PKD2L1 and that CaM Nlobe and PKD2L1 EF-hand specifically are involved. However, the CaM-binding domain (CaMBD) and its inhibitory mechanism of PKD2L1 have not been identified. In order to identify CaM-binding anchor residue of PKD2L1, single mutants of putative CaMBD and EF-hand deletion mutants were generated. The current changes of the mutants were recorded with whole-cell patch clamp. The calmidazolium (CMZ), a calmodulin inhibitor, was used under different concentrations of intracellular. Among the mutants that showed similar or higher basal currents with that of the PKD2L1 wild type, L593A showed little change in current induced by CMZ. Co-expression of L593A with CaM attenuated the inhibitory effect of PKD2L1 by CaM. In the previous study it was inferred that CaM C-lobe inhibits channels by binding to PKD2L1 at 16 nM calcium concentration and CaM N-lobe at 100 nM. Based on the results at 16 nM calcium concentration condition, this study suggests that CaM C-lobe binds to Leu- 593, which can be a CaM C-lobe anchor residue, to regulate channel activity. Taken together, our results provide a model for the regulation of PKD2L1 channel activity by CaM.
10.Ca2+/calmodulin-dependent regulation of polycystic kidney disease 2-like-1 by binding at C-terminal domain
Julia Young BAIK ; Eunice Yon June PARK ; Insuk SO
The Korean Journal of Physiology and Pharmacology 2020;24(3):277-286
Polycystic kidney disease 2-like-1 (PKD2L1), also known as polycystin- L or TRPP3, is a non-selective cation channel that regulates intracellular calcium concentration. Calmodulin (CaM) is a calcium binding protein, consisting of N-lobe and C-lobe with two calcium binding EF-hands in each lobe. In previous study, we confirmed that CaM is associated with desensitization of PKD2L1 and that CaM Nlobe and PKD2L1 EF-hand specifically are involved. However, the CaM-binding domain (CaMBD) and its inhibitory mechanism of PKD2L1 have not been identified. In order to identify CaM-binding anchor residue of PKD2L1, single mutants of putative CaMBD and EF-hand deletion mutants were generated. The current changes of the mutants were recorded with whole-cell patch clamp. The calmidazolium (CMZ), a calmodulin inhibitor, was used under different concentrations of intracellular. Among the mutants that showed similar or higher basal currents with that of the PKD2L1 wild type, L593A showed little change in current induced by CMZ. Co-expression of L593A with CaM attenuated the inhibitory effect of PKD2L1 by CaM. In the previous study it was inferred that CaM C-lobe inhibits channels by binding to PKD2L1 at 16 nM calcium concentration and CaM N-lobe at 100 nM. Based on the results at 16 nM calcium concentration condition, this study suggests that CaM C-lobe binds to Leu- 593, which can be a CaM C-lobe anchor residue, to regulate channel activity. Taken together, our results provide a model for the regulation of PKD2L1 channel activity by CaM.

Result Analysis
Print
Save
E-mail