1.DNA damage to human genetic disorders with neurodevelopmental defects.
Youngsoo LEE ; Inseo CHOI ; Jusik KIM ; Keeeun KIM
Journal of Genetic Medicine 2016;13(1):1-13
Although some mutations are beneficial and are the driving force behind evolution, it is important to maintain DNA integrity and stability because it contains genetic information. However, in the oxygen-rich environment we live in, the DNA molecule is under constant threat from endogenous or exogenous insults. DNA damage could trigger the DNA damage response (DDR), which involves DNA repair, the regulation of cell cycle checkpoints, and the induction of programmed cell death or senescence. Dysregulation of these physiological responses to DNA damage causes developmental defects, neurological defects, premature aging, infertility, immune system defects, and tumors in humans. Some human syndromes are characterized by unique neurological phenotypes including microcephaly, mental retardation, ataxia, neurodegeneration, and neuropathy, suggesting a direct link between genomic instability resulting from defective DDR and neuropathology. In this review, rare human genetic disorders related to abnormal DDR and damage repair with neural defects will be discussed.
Aging
;
Aging, Premature
;
Ataxia
;
Cell Cycle Checkpoints
;
Cell Death
;
Central Nervous System Diseases
;
DNA Breaks, Double-Stranded
;
DNA Breaks, Single-Stranded
;
DNA Damage*
;
DNA Repair
;
DNA*
;
Genomic Instability
;
Humans*
;
Immune System
;
Infertility
;
Intellectual Disability
;
Microcephaly
;
Neuropathology
;
Phenotype
2.Antioxidant and anti-inflammatory activities of Lespedeza cuneata in Coal fly ash-induced murine alveolar macrophage cells
Abdul WAHAB ; Hwayong SIM ; Kyubin CHOI ; Yejin KIM ; Yookyeong LEE ; Byungwook KANG ; Yu Seong NO ; Dongyeop LEE ; Inseo LEE ; Jaehyeon LEE ; Hwajun CHA ; Sung Dae KIM ; Evelyn SABA ; Man Hee RHEE
Korean Journal of Veterinary Research 2023;63(3):e27-
Lespedeza cuneata (LC) is a perennial plant used in herbal medicine to treat numerous diseases, including prostatic hyperplasia, diabetes, early atherosclerosis, and hematuria. Reference collections of bioactive compounds of LC are crucial for the determination of their pharmacological properties. However, little is known regarding its anti-oxidative and anti-inflammatory effects in alveolar macrophage (MH-S) cells. This study examined whether LC can inhibit reactive oxygen species and Coal fly ash (CFA) induced inflammation in MH-S cells. The anti-oxidative effects of LC were evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, anti-inflammatory effects were examined using nitric oxide (NO) assay, and cytotoxicity was analyzed using methyl thiazolyl tetrazolium assay. The expression of inflammatory cytokine genes was assessed through a reverse-transcription polymerase chain reaction. Our results revealed that LC exhibited high radical scavenging activity and a dose-dependent (7.8–1,000 μg/mL) inhibition of oxidation as compared to ascorbic acid and Trolox. It also inhibited CFA-induced NO production in MH-S cells. Moreover, it suppressed the CFA exposure-mediated expression of pro-inflammatory mediators and cytokines, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. These results suggest that LC is a potent antioxidant and anti-inflammatory agent that can be useful as a nutraceutical product.