1.Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs.
Jin Woo CHOI ; Jae Young LEE ; Eui Jin HWANG ; Inpyeong HWANG ; Sungmin WOO ; Chang Joo LEE ; Eun Joo PARK ; Byung Ihn CHOI
Ultrasonography 2014;33(3):191-199
PURPOSE: The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. METHODS: To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. RESULTS: In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. CONCLUSION: Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.
Ablation Techniques
;
Animal Experimentation
;
Animals
;
Equipment and Supplies
;
High-Intensity Focused Ultrasound Ablation
;
Image Processing, Computer-Assisted*
;
Kidney
;
Sonication
;
Swine*
;
Thigh
;
Transducers
;
Ultrasonography*
;
Water
2.Validation of Ultrasound and Computed Tomography-Based Risk Stratification System and Biopsy Criteria for Cervical Lymph Nodes in Preoperative Patients With Thyroid Cancer
Young Hun JEON ; Ji Ye LEE ; Roh-Eul YOO ; Jung Hyo RHIM ; Kyung Hoon LEE ; Kyu Sung CHOI ; Inpyeong HWANG ; Koung Mi KANG ; Ji-hoon KIM
Korean Journal of Radiology 2023;24(9):912-923
Objective:
This study aimed to validate the risk stratification system (RSS) and biopsy criteria for cervical lymph nodes (LNs) proposed by the Korean Society of Thyroid Radiology (KSThR).
Materials and Methods:
This retrospective study included a consecutive series of preoperative patients with thyroid cancer who underwent LN biopsy, ultrasound (US), and computed tomography (CT) between December 2006 and June 2015. LNs were categorized as probably benign, indeterminate, or suspicious according to the current US- and CT-based RSS and the size thresholds for cervical LN biopsy as suggested by the KSThR. The diagnostic performance and unnecessary biopsy rates were calculated.
Results:
A total of 277 LNs (53.1% metastatic) in 228 patients (mean age ± standard deviation, 47.4 years ± 14) were analyzed. In US, the malignancy risks were significantly different among the three categories (all P < 0.001); however, CTdetected probably benign and indeterminate LNs showed similarly low malignancy risks (P = 0.468). The combined US + CT criteria stratified the malignancy risks among the three categories (all P < 0.001) and reduced the proportion of indeterminate LNs (from 20.6% to 14.4%) and the malignancy risk in the indeterminate LNs (from 31.6% to 12.5%) compared with US alone. In all image-based classifications, nodal size did not affect the malignancy risks (short diameter [SD] ≤ 5 mm LNs vs. SD > 5 mm LNs, P ≥ 0.177). The criteria covering only suspicious LNs showed higher specificity and lower unnecessary biopsy rates than the current criteria, while maintaining sensitivity in all imaging modalities.
Conclusion
Integrative evaluation of US and CT helps in reducing the proportion of indeterminate LNs and the malignancy risk among them. Nodal size did not affect the malignancy risk of LNs, and the addition of indeterminate LNs to biopsy candidates did not have an advantage in detecting LN metastases in all imaging modalities.
3.Cerebrovascular Reservoir and Arterial Transit Time Changes Assessed by Acetazolamide-Challenged Multi-Phase Arterial Spin Labeling Perfusion MRI in Chronic Cerebrovascular Steno-Occlusive Disease
Inpyeong HWANG ; Chul-Ho SOHN ; Keun-Hwa JUNG ; Eung Koo YEON ; Ji Ye LEE ; Roh-Eul YOO ; Koung Mi KANG ; Tae Jin YUN ; Seung Hong CHOI ; Ji-hoon KIM
Journal of the Korean Radiological Society 2021;82(3):626-637
Purpose:
To explore cerebrovascular reservoir (CVR) and arterial transit time (ATT) changes using acetazolamide-challenged multi-phase arterial spin labeling (MP-ASL) perfusion-weighted MRI in chronic cerebrovascular steno-occlusive disease.
Materials and Methods:
This retrospective study enrolled patients with chronic steno-occlusion who underwent acetazolamide-challenged MP-ASL between June 2019 and October 2020.Cerebral blood flow, CVR, basal ATT, and ATT changes associated with severe stenosis, total occlusion, and chronic infarction lesions were compared.
Results:
There were 32 patients (5 with bilateral steno-occlusion) in our study sample. The CVR was significantly reduced during total occlusion compared with severe stenosis (26.2% ± 28.8% vs. 41.4% ± 34.1%, respectively, p = 0.004). The ATT changes were not significantly different (p = 0.717). The CVR was marginally lower in patients with chronic infarction (29.6% ± 39.1% vs. 38.9% ± 28.7%, respectively, p = 0.076). However, the ATT was less shortened in pa-tients with chronic infarction (-54 ± 135 vs. -117 ± 128 ms, respectively, p = 0.013).
Conclusion
Acetazolamide-challenged MP-ASL provides an MRI-based CVR evaluation tool for chronic steno-occlusive disease.
4.Cerebrovascular Reservoir and Arterial Transit Time Changes Assessed by Acetazolamide-Challenged Multi-Phase Arterial Spin Labeling Perfusion MRI in Chronic Cerebrovascular Steno-Occlusive Disease
Inpyeong HWANG ; Chul-Ho SOHN ; Keun-Hwa JUNG ; Eung Koo YEON ; Ji Ye LEE ; Roh-Eul YOO ; Koung Mi KANG ; Tae Jin YUN ; Seung Hong CHOI ; Ji-hoon KIM
Journal of the Korean Radiological Society 2021;82(3):626-637
Purpose:
To explore cerebrovascular reservoir (CVR) and arterial transit time (ATT) changes using acetazolamide-challenged multi-phase arterial spin labeling (MP-ASL) perfusion-weighted MRI in chronic cerebrovascular steno-occlusive disease.
Materials and Methods:
This retrospective study enrolled patients with chronic steno-occlusion who underwent acetazolamide-challenged MP-ASL between June 2019 and October 2020.Cerebral blood flow, CVR, basal ATT, and ATT changes associated with severe stenosis, total occlusion, and chronic infarction lesions were compared.
Results:
There were 32 patients (5 with bilateral steno-occlusion) in our study sample. The CVR was significantly reduced during total occlusion compared with severe stenosis (26.2% ± 28.8% vs. 41.4% ± 34.1%, respectively, p = 0.004). The ATT changes were not significantly different (p = 0.717). The CVR was marginally lower in patients with chronic infarction (29.6% ± 39.1% vs. 38.9% ± 28.7%, respectively, p = 0.076). However, the ATT was less shortened in pa-tients with chronic infarction (-54 ± 135 vs. -117 ± 128 ms, respectively, p = 0.013).
Conclusion
Acetazolamide-challenged MP-ASL provides an MRI-based CVR evaluation tool for chronic steno-occlusive disease.
5.The diagnostic ability of an additional midline peripheral zone biopsy in transrectal ultrasonography-guided 12-core prostate biopsy to detect midline prostate cancer.
Inpyeong HWANG ; Sang Youn KIM ; Jeong Yeon CHO ; Myoung Seok LEE ; Seung Hyup KIM
Ultrasonography 2016;35(1):61-68
PURPOSE: The goal of this study was to evaluate the diagnostic effect of adding a midline peripheral zone (PZ) biopsy to the 12-core biopsy protocol used to diagnose prostate cancer (PC), and to assess the clinical and pathologic characteristics of midline-positive PC in order to identify a potential subgroup of patients who would require midline PZ biopsy. METHODS: This study included 741 consecutive patients who underwent a transrectal ultrasonography-guided, 12-core prostate biopsy with an additional midline core biopsy between October 2012 and December 2013. We grouped patients by the presence or absence of PC and subdivided patients with PC based on the involvement of the midline core. The clinical characteristics of these groups were compared, including serum prostate-specific antigen (PSA) concentrations, PSA density, and pathological features in the biopsy specimens. RESULTS: PC was detected in 289 patients (39.0%). Among the PC patients, 66 patients (22.8%) had midline PC. No patients were diagnosed with PC based only on a midline core. The Gleason scores, number of positive cores, tumor core length, serum PSA concentrations, and PSA density were significantly higher in patients with midline-positive PC (P<0.001). Furthermore, significant cancer was more frequent in the midline-positive group (98.5% vs. 78.0%). CONCLUSION: Patients showing a positive result for PC in a midline PZ biopsy were more likely to have multiple tumors or large-volume PC with a high tumor burden. However, our data indicated that an additional midline core biopsy is unlikely to be helpful in detecting occult midline PC.
Biopsy*
;
Humans
;
Image-Guided Biopsy
;
Prostate*
;
Prostate-Specific Antigen
;
Prostatic Neoplasms*
;
Tumor Burden
;
Ultrasonography
6.Ultrasonographic Indeterminate Lymph Nodes inPreoperative Thyroid Cancer Patients: Malignancy Riskand Ultrasonographic Findings Predictive of Malignancy
Roh-Eul YOO ; Ji-hoon KIM ; Jeong Mo BAE ; Inpyeong HWANG ; Koung Mi KANG ; Tae Jin YUN ; Seung Hong CHOI ; Chul-Ho SOHN ; Jung Hyo RHIM ; Sun-Won PARK
Korean Journal of Radiology 2020;21(5):598-604
Objective:
Proper management of lymph nodes (LNs) with ultrasonographic (US) indeterminate features in thyroid cancerpatients remains elusive. We aimed to evaluate the malignancy risk and US findings predictive of malignancy for USindeterminate LNs in preoperative thyroid cancer patients through node-by-node correlation.
Materials and Methods:
A total of 348 LNs in 284 thyroid cancer patients, who underwent fine-needle aspiration or coreneedlebiopsy between December 2006 and June 2015, were included. We determined the malignancy risks for US probablybenign, indeterminate, and suspicious categories. For US indeterminate LNs, which had neither echogenic hilum nor hilarvascularity in the absence of any suspicious finding, US findings were compared between benign and metastatic LNs usingMann-Whitney U test and Fisher’s exact test.
Results:
US imaging diagnoses were probably benign in 20.7% (n = 72) cases, indeterminate in 23.6% (n = 82), andsuspicious in 55.7% (n = 194). Malignancy risk of US indeterminate LNs (19.5% [16/82]) differed from those of the USprobably benign (2.8% [2/72]) (p = 0.002) and US suspicious LNs (78.4% [152/194]) (p < 0.001). Among US indeterminate LNs,there were no significant differences in short, long, and long-to-short diameter (L/S) ratios between benign and metastatic LNs(3.9 vs. 3.8 mm, p = 0.619; 7.3 vs. 7.3 mm, p = 0.590; 1.9 vs. 1.9, p = 0.652).
Conclusion
US indeterminate LNs were frequently encountered during preoperative evaluation and had intermediate malignancyrisk. Given the lack of discriminative power of size criteria and L/S ratio, clinical factors such as surgical strategy and nodesize should be considered for proper triage of US indeterminate LNs in thyroid cancer.
7.Myelin Content in Mild Traumatic Brain Injury Patients with Post-Concussion Syndrome: Quantitative Assessment with a Multidynamic Multiecho Sequence
Roh-Eul YOO ; Seung Hong CHOI ; Sung-Won YOUN ; Moonjung HWANG ; Eunkyung KIM ; Byung-Mo OH ; Ji Ye LEE ; Inpyeong HWANG ; Koung Mi KANG ; Tae Jin YUN ; Ji-hoon KIM ; Chul-Ho SOHN
Korean Journal of Radiology 2022;23(2):226-236
Objective:
This study aimed to explore the myelin volume change in patients with mild traumatic brain injury (mTBI) with post-concussion syndrome (PCS) using a multidynamic multiecho (MDME) sequence and automatic whole-brain segmentation.
Materials and Methods:
Forty-one consecutive mTBI patients with PCS and 29 controls, who had undergone MRI including the MDME sequence between October 2016 and April 2018, were included. Myelin volume fraction (MVF) maps were derived from the MDME sequence. After three dimensional T1-based brain segmentation, the average MVF was analyzed at the bilateral cerebral white matter (WM), bilateral cerebral gray matter (GM), corpus callosum, and brainstem. The Mann–Whitney U-test was performed to compare MVF and myelin volume between patients with mTBI and controls. Myelin volume was correlated with neuropsychological test scores using the Spearman rank correlation test.
Results:
The average MVF at the bilateral cerebral WM was lower in mTBI patients with PCS (median [interquartile range], 25.2% [22.6%–26.4%]) than that in controls (26.8% [25.6%–27.8%]) (p = 0.004). The region-of-interest myelin volume was lower in mTBI patients with PCS than that in controls at the corpus callosum (1.87 cm3 [1.70–2.05 cm3 ] vs. 2.21 cm3 [1.86– 3.46 cm3 ]; p = 0.003) and brainstem (9.98 cm3 [9.45–11.00 cm3 ] vs. 11.05 cm3 [10.10–11.53 cm3 ]; p = 0.015). The total myelin volume was lower in mTBI patients with PCS than that in controls at the corpus callosum (0.45 cm3 [0.39–0.48 cm3 ] vs. 0.48 cm3 [0.45–0.54 cm3 ]; p = 0.004) and brainstem (1.45 cm3 [1.28–1.59 cm3 ] vs. 1.54 cm3 [1.42–1.67 cm3 ]; p = 0.042). No significant correlation was observed between myelin volume parameters and neuropsychological test scores, except for the total myelin volume at the bilateral cerebral WM and verbal learning test (delayed recall) (r = 0.425; p = 0.048).
Conclusion
MVF quantified from the MDME sequence was decreased at the bilateral cerebral WM in mTBI patients with PCS. The total myelin volumes at the corpus callosum and brainstem were decreased in mTBI patients with PCS due to atrophic changes.
8.Added Value of Contrast Leakage Information over the CBV Value of DSC Perfusion MRI to Differentiate between Pseudoprogression and True Progression after Concurrent Chemoradiotherapy in Glioblastoma Patients
Elena PAK ; Seung Hong CHOI ; Chul-Kee PARK ; Tae Min KIM ; Sung-Hye PARK ; Jae-Kyung WON ; Joo Ho LEE ; Soon-Tae LEE ; Inpyeong HWANG ; Roh-Eul YOO ; Koung Mi KANG ; Tae Jin YUN
Investigative Magnetic Resonance Imaging 2022;26(1):10-19
Purpose:
To evaluate whether the added value of contrast leakage information from dynamic susceptibility contrast magnetic resonance imaging (DSC MRI) is a better prognostic imaging biomarker than the cerebral blood volume (CBV) value in distinguishing true progression from pseudoprogression in glioblastoma patients.
Materials and Methods:
Forty-nine glioblastoma patients who had undergone MRI after concurrent chemoradiotherapy with temozolomide were enrolled in this retrospective study. Twenty features were extracted from the normalized relative CBV (nCBV) and extraction fraction (EF) map of the contrast-enhancing region in each patient. After univariable analysis, we used multivariable stepwise logistic regression analysis to identify significant predictors for differentiating between pseudoprogression and true progression. Receiver operating characteristic (ROC) analysis was employed to determine the best cutoff values for the nCBV and EF features. Finally, leave-one-out cross-validation was used to validate the best predictor in differentiating between true progression and pseudoprogression.
Results:
Multivariable stepwise logistic regression analysis showed that MGMT (O 6 -methylguanine-DNA methyltransferase) and EF max were independent differentiating variables (P = 0.004 and P = 0.02, respectively). ROC analysis yielded the best cutoff value of 95.75 for the EF max value for differentiating the two groups (sensitivity, 61%; specificity, 84.6%; AUC, 0.681 ± 0.08; 95% CI, 0.524-0.837; P = 0.03). In the leave-one-out cross-validation of the EF max value, the cross-validated values for predicting true progression and pseudoprogression accuracies were 69.4% and 71.4%,respectively.
Conclusion
We demonstrated that contrast leakage information parameter from DSC MRI showed significance in differentiating true progression from pseudoprogression in glioblastoma patients.
9.Prediction of Prognosis in Glioblastoma Using Radiomics Features of Dynamic Contrast-Enhanced MRI
Elena PAK ; Kyu Sung CHOI ; Seung Hong CHOI ; Chul-Kee PARK ; Tae Min KIM ; Sung-Hye PARK ; Joo Ho LEE ; Soon-Tae LEE ; Inpyeong HWANG ; Roh-Eul YOO ; Koung Mi KANG ; Tae Jin YUN ; Ji-Hoon KIM ; Chul-Ho SOHN
Korean Journal of Radiology 2021;22(9):1514-1524
Objective:
To develop a radiomics risk score based on dynamic contrast-enhanced (DCE) MRI for prognosis prediction in patients with glioblastoma.
Materials and Methods:
One hundred and fifty patients (92 male [61.3%]; mean age ± standard deviation, 60.5 ± 13.5 years) with glioblastoma who underwent preoperative MRI were enrolled in the study. Six hundred and forty-two radiomic features were extracted from volume transfer constant (Ktrans), fractional volume of vascular plasma space (Vp), and fractional volume of extravascular extracellular space (Ve) maps of DCE MRI, wherein the regions of interest were based on both T1-weighted contrast-enhancing areas and non-enhancing T2 hyperintense areas. Using feature selection algorithms, salient radiomic features were selected from the 642 features. Next, a radiomics risk score was developed using a weighted combination of the selected features in the discovery set (n = 105); the risk score was validated in the validation set (n = 45) by investigating the difference in prognosis between the “radiomics risk score” groups. Finally, multivariable Cox regression analysis for progression-free survival was performed using the radiomics risk score and clinical variables as covariates.
Results:
16 radiomic features obtained from non-enhancing T2 hyperintense areas were selected among the 642 features identified. The radiomics risk score was used to stratify high- and low-risk groups in both the discovery and validation sets (both p < 0.001 by the log-rank test). The radiomics risk score and presence of isocitrate dehydrogenase (IDH) mutation showed independent associations with progression-free survival in opposite directions (hazard ratio, 3.56; p = 0.004 and hazard ratio, 0.34; p = 0.022, respectively).
Conclusion
We developed and validated the “radiomics risk score” from the features of DCE MRI based on non-enhancing T2 hyperintense areas for risk stratification of patients with glioblastoma. It was associated with progression-free survival independently of IDH mutation status.
10.Assessment of Mild Cognitive Impairment in Elderly Subjects Using a Fully Automated Brain Segmentation Software
Chiheon KWON ; Koung Mi KANG ; Min Soo BYUN ; Dahyun YI ; Huijin SONG ; Ji Ye LEE ; Inpyeong HWANG ; Roh-Eul YOO ; Tae Jin YUN ; Seung Hong CHOI ; Ji-hoon KIM ; Chul-Ho SOHN ; Dong Young LEE ;
Investigative Magnetic Resonance Imaging 2021;25(3):164-171
Purpose:
Mild cognitive impairment (MCI) is a prodromal stage of Alzheimer's disease (AD). Brain atrophy in this disease spectrum begins in the medial temporal lobe structure, which can be recognized by magnetic resonance imaging. To overcome the unsatisfactory inter-observer reliability of visual evaluation, quantitative brain volumetry has been developed and widely investigated for the diagnosis of MCI and AD. The aim of this study was to assess the prediction accuracy of quantitative brain volumetry using a fully automated segmentation software package, NeuroQuant®, for the diagnosis of MCI.
Materials and Methods:
A total of 418 subjects from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer’s Disease cohort were included in our study. Each participant was allocated to either a cognitively normal old group (n = 285) or an MCI group (n = 133). Brain volumetric data were obtained from T1-weighted images using the NeuroQuant software package. Logistic regression and receiver operating characteristic (ROC) curve analyses were performed to investigate relevant brain regions and their prediction accuracies.
Results:
Multivariate logistic regression analysis revealed that normative percentiles of the hippocampus (P < 0.001), amygdala (P = 0.003), frontal lobe (P = 0.049), medial parietal lobe (P = 0.023), and third ventricle (P = 0.012) were independent predictive factors for MCI. In ROC analysis, normative percentiles of the hippocampus and amygdala showed fair accuracies in the diagnosis of MCI (area under the curve: 0.739 and 0.727, respectively).
Conclusion
Normative percentiles of the hippocampus and amygdala provided by the fully automated segmentation software could be used for screening MCI with a reasonable post-processing time. This information might help us interpret structural MRI in patients with cognitive impairment.