1.Effects of the ITPR1 gene overexpression on Ca²⁺ concentration, lipid content and calcium transport-related genes in duck uterine epithelial cells.
Minfang YOU ; Yuanyu QIN ; Yiyu ZHANG ; Chaomei LIAO ; Guanghui TAN ; Jiezhang LI ; Wangui LI
Chinese Journal of Biotechnology 2021;37(7):2443-2452
Inositol 1,4,5-trisphosphate receptor 1 (ITPR1) is an important intracellular channel for releasing Ca²⁺. In order to investigate the effects of the ITPR1 overexpression on Ca²⁺ concentration and lipid content in duck uterine epithelial cells and its effects on calcium transport-related genes, the structural domain of ITPR1 gene of duck was cloned into an eukaryotic expression vector and transfected into duck uterine epithelial cells. The overexpression of the ITPR1 gene, the concentration of Ca²⁺, the lipid content, and the expression of other 6 calcium transport-related genes was determined. The results showed that the concentration of Ca²⁺ in uterine epithelial cells was significantly reduced after transfection (P<0.05), the triglyceride content was significantly increased (P<0.01), and the high-density lipoprotein content was significantly decreased (P<0.01). The correlation analysis results showed that the overexpression of the C-terminal half of the ITPR1 gene was significantly positively correlated with the total cholesterol content (P<0.01), which was significantly positively correlated with the low-density lipoprotein content (P<0.05). The overexpression of the N-terminal half of the ITPR1 gene was significantly positively correlated with the triglyceride content (P<0.01), which was significantly negatively correlated with the concentration of Ca²⁺ (P<0.05). RT-qPCR results of 6 calcium transport-related genes showed that the overexpression of the C-terminal half of the ITPR1 gene significantly inhibited the expression of the IP3R2, VDAC2 and CAV1 genes, and the overexpression of the N-terminal half of the ITPR1 gene significantly promoted the expression of the IP3R3 and CACNA2D1 genes. In conclusion, the ITPR1 gene overexpression can promote Ca²⁺ release in duck uterus epithelial cells, promote the synthesis of triglyceride, low-density lipoprotein and cholesterol, and inhibit the production of high-density lipoprotein, and the ITPR1 gene overexpression affected the expression of all 6 calcium transport-related genes.
Animals
;
Calcium/metabolism*
;
Ducks/genetics*
;
Epithelial Cells
;
Female
;
Inositol
;
Inositol 1,4,5-Trisphosphate Receptors
;
Lipids
;
Uterus
2.Diagnosis of a patient with Spinocerebellar ataxia type 29 due to a novel variant of ITPR1 gene.
Ya Nan ZHI ; Jiao LIU ; Cheng ZHEN ; Juan LI ; Fangna WANG ; Yan LUO ; Pingping ZHANG ; Mingming ZHANG ; Yali LI
Chinese Journal of Medical Genetics 2023;40(1):76-80
OBJECTIVE:
To explore the clinical and genetic characteristics of a child with spinocerebellar ataxia type 29 (SCA29) due to novel variant of the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) gene.
METHODS:
The child was subjected high-throughput sequencing, and candidate variant was verified by Sanger sequencing of his family members.
RESULTS:
The child was found to harbor a c.800C>T (p.T267M) variant of the ITPR1 gene, which was not found in his parents and their fetus. The variant has occurred in a hotspot of the ITPR1 gene variants and was unreported before in China. Based on his clinical and genetic characteristics, the child was diagnosed with SCA29.
CONCLUSION
The novel heterozygous c.800C>T (p.T267M) of the ITPR1 gene probably underlay the SCA29 in this child.
Child
;
Humans
;
Family
;
Inositol 1,4,5-Trisphosphate Receptors/genetics*
;
Mutation
;
Spinocerebellar Ataxias/genetics*
;
Spinocerebellar Degenerations
3.Renal type I inositol 1,4,5-triphosphate receptors expression increases in fulminant hepatic failure in mice.
Chinese Journal of Hepatology 2007;15(6):403-407
OBJECTIVETo study the changes of expression of type I inositol 1,4,5 triphosphate receptors (IP3RI) in the kidneys of mice with fulminant hepatic failure (FHF) in order to understand the role renal vasoconstriction plays in the development of hepatorenal syndrome (HRS).
METHODSOne hundred twenty male Balb/c mice were divided into 4 groups. In the fourth group (60 mice) lipopolysaccharide with D-galactosamine was injected intraperitoneally to induce acute liver necrosis. The first-third groups (20 mice in each group) served as controls and those mice were given NS, LPS or GalN intraperitoneally. At the end of 2 h, 6 h, and 9 h, mice were sacrificed and their livers and kidneys were removed and examined histologically. Immunohistochemistry, Western blot and reverse transcription PCR (RT-PCR) were used to detect the distribution and expression of IP3RI in the kidneys.
RESULTSIP3RI protein was localized in the cytoplasma of glomerular mesangial cells and vascular smooth muscle cells in the kidneys. In the kidney tissues from mice with FHF at 6 h and 9 h, IP3RI-positive staining cells increased significantly (6 h: chi(2)=7.11, P less than 0.01; 9 h: (chi)2=9.15, P less than 0.01). Western blot demonstrated a consistent and significant increase of IP3RI expression in mice with FHF at 6 h and 9 h (6 h: t=3.16, P less than 0.05; 9 h: t=5.43, P less than 0.01). Using RT-PCR we observed that IP3RI mRNA in FHF samples at 2 h, 6 h and 9 h was markedly up-regulated in comparison to that of the controls (2 h: t=2.47, P less than 0.05; 6 h: t=4.42, P less than 0.01; 9 h: t=2.16, P less than 0.05).
CONCLUSIONThe expression of IP3RI protein increased in glomerular mesangial cells and renal vascular smooth muscle cells of FHF mice. Perhaps this was caused by IP3RI mRNA up-regulation.
Animals ; Disease Models, Animal ; Inositol 1,4,5-Trisphosphate Receptors ; metabolism ; Liver Failure, Acute ; metabolism ; Male ; Mice ; Mice, Inbred BALB C ; RNA, Messenger ; genetics
4.Inositol 1,4,5-triphosphate receptor 3 promotes renal cyst development in autosomal dominant polycystic kidney disease.
Zhi-Wei QIU ; Ming LIU ; Hong ZHOU ; Bao-Xue YANG
Acta Physiologica Sinica 2023;75(3):328-338
The purpose of the present study was to determine the role of inositol 1,4,5-trisphosphate receptor 3 (IP3R3) in renal cyst development in autosomal dominant polycystic kidney disease (ADPKD). 2-aminoethoxy-diphenyl borate (2-APB) and shRNA were used to suppress the expression of IP3R3. The effect of IP3R3 on cyst growth was investigated in Madin-Darby canine kidney (MDCK) cyst model, embryonic kidney cyst model and kidney specific Pkd1 knockout (PKD) mouse model. The underlying mechanism of IP3R3 in promoting renal cyst development was investigated by Western blot and immunofluorescence staining. The results showed that the expression level of IP3R3 was significantly increased in the kidneys of PKD mice. Inhibiting IP3R3 by 2-APB or shRNA significantly retarded cyst expansion in MDCK cyst model and embryonic kidney cyst model. Western blot and immunofluorescence staining results showed that hyperactivated cAMP-PKA signaling pathway in the growth process of ADPKD cyst promoted the expression of IP3R3, which was accompanied by a subcellular redistribution process in which IP3R3 was translocated from endoplasmic reticulum to intercellular junction. The abnormal expression and subcellular localization of IP3R3 further promoted cyst epithelial cell proliferation by activating MAPK and mTOR signaling pathways and accelerating cell cycle. These results suggest that the expression and subcellular distribution of IP3R3 are involved in promoting renal cyst development, which implies IP3R3 as a potential therapeutic target of ADPKD.
Animals
;
Dogs
;
Mice
;
Cysts/genetics*
;
Inositol 1,4,5-Trisphosphate Receptors/pharmacology*
;
Kidney/metabolism*
;
Polycystic Kidney Diseases/metabolism*
;
Polycystic Kidney, Autosomal Dominant/drug therapy*
;
Madin Darby Canine Kidney Cells
5.ERp44 C160S/C212S mutants regulate IP3R1 channel activity.
Congyan PAN ; Ji ZHENG ; Yanyun WU ; Yingxiao CHEN ; Likun WANG ; Zhansong ZHOU ; Wenxuan YIN ; Guangju JI
Protein & Cell 2011;2(12):990-996
Previous studies have indicated that ERp44 inhibits inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release (IICR) via IP(3)R(1), but the mechanism remains largely unexplored. Using extracellular ATP to induce intracellular calcium transient as an IICR model, Ca(2+) image, pull down assay, and Western blotting experiments were carried out in the present study. We found that extracellular ATP induced calcium transient via IP(3)Rs (IICR) and the IICR were markedly decreased in ERp44 overexpressed Hela cells. The inhibitory effect of C160S/C212S but not C29S/T396A/ΔT(331-377) mutants of ERp44 on IICR were significantly decreased compared with ERp44. However, the binding capacity of ERp44 to L3V domain of IP(3)R(1) (1L3V) was enhanced by ERp44 C160S/C212S mutation. Taken together, these results suggest that the mutants of ERp44, C160/C212, can more tightly bind to IP(3)R(1) but exhibit a weak inhibition of IP(3)R(1) channel activity in Hela cells.
Adenosine Triphosphate
;
pharmacology
;
Amino Acid Substitution
;
Biological Transport
;
drug effects
;
physiology
;
Blotting, Western
;
Calcium
;
metabolism
;
Calcium Signaling
;
drug effects
;
physiology
;
HeLa Cells
;
Humans
;
Immunoprecipitation
;
Inositol 1,4,5-Trisphosphate
;
metabolism
;
Inositol 1,4,5-Trisphosphate Receptors
;
physiology
;
Membrane Potentials
;
drug effects
;
physiology
;
Membrane Proteins
;
genetics
;
metabolism
;
Microscopy, Confocal
;
Molecular Chaperones
;
genetics
;
metabolism
;
Mutation
;
Plasmids
;
Transfection
6.Alteration of Expression of Ca(2+) Signaling Proteins and Adaptation of Ca(2+) Signaling in SERCA2(+/-) Mouse Parotid Acini.
Jong Hoon CHOI ; Hae JO ; Jeong Hee HONG ; Syng Ill LEE ; Dong Min SHIN
Yonsei Medical Journal 2008;49(2):311-321
PURPOSE: The sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA), encoded by ATP2A2, is an essential component for G-protein coupled receptor (GPCR)-dependent Ca(2+) signaling. However, whether the changes in Ca(2+) signaling and Ca(2+) signaling proteins in parotid acinar cells are affected by a partial loss of SERCA2 are not known. MATERIALS AND METHODS: In SERCA2(+/-) mouse parotid gland acinar cells, Ca(2+) signaling, expression levels of Ca(2+) signaling proteins, and amylase secretion were investigated. RESULTS: SERCA2(+/-) mice showed decreased SERCA2 expression and an upregulation of the plasma membrane Ca(2+) ATPase. A partial loss of SERCA2 changed the expression level of 1, 4, 5-tris-inositolphosphate receptors (IP(3)Rs), but the localization and activities of IP3Rs were not altered. In SERCA2(+/-) mice, muscarinic stimulation resulted in greater amylase release, and the expression of synaptotagmin was increased compared to wild type mice. CONCLUSION: These results suggest that a partial loss of SERCA2 affects the expression and activity of Ca(2+) signaling proteins in the parotid gland acini, however, overall Ca(2+) signaling is unchanged.
Amylases/metabolism
;
Animals
;
Blotting, Western
;
Calcium/metabolism
;
Calcium Signaling/drug effects/genetics/*physiology
;
Carbachol/pharmacology
;
Immunohistochemistry
;
Inositol 1,4,5-Trisphosphate Receptors/metabolism
;
Mice
;
Mice, Knockout
;
Parotid Gland/*metabolism
;
Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics/*metabolism
;
Signal Transduction/drug effects/genetics/physiology
7.The extracellular calcium sensing receptor is expressed in mouse mesangial cells and modulates cell proliferation.
Jin Oh KWAK ; Jiyeon KWAK ; Hyun Woo KIM ; Kwang Jin OH ; Yun Tai KIM ; Sun Mi JUNG ; Seok Ho CHA
Experimental & Molecular Medicine 2005;37(5):457-465
The extracellular calcium sensing receptor (CaSR) belongs to the type III family of G-protein-coupled receptors, a family that comprises the metabotropic glutamate receptor and the putative vomeronasal organ receptors. The CaSR plays an important role for calcium homeostasis in parathyroid cells, kidney cells and other cells to directly 'sense' changes in the extracellular calcium ion concentration ((Ca2+)o). The mesangial cells are known to be involved in many pathologic sequences through the mediation of altered glomerular hemodynamics, cell proliferation, and matrix production. In this study, we examined the expression of the CaSR in the mouse mesangial cell lines (MMC, ATCC number CRL-1927). Reverse transcription- polymerase chain reaction (RT-PCR) was perform with CaSR-specific primers, and this was followed by nucleotide sequencing of the amplified product; this process identified the CaSR transcript in the MMCs. Moreover, CaSR protein was present in the MMCs as assessed by Western blot and immunocytochemical analysis using a polyclonal antibody specific for the CaSR. Functionally, (Ca2+)o induced the increment of the intracellular calcium concentration ((Ca2+)i) in a dose-dependent manner. This (Ca2+)i increment by (Ca2+)o was attenuated by the pretreatment with a phospholipase C inhibitor (U73122) and also by a pretreatment with a CaSR antagonist (NPS 2390). The similar results were also obtained in IP3 accumulation by (Ca2+)o. To investigate the physiological effect of the CaSR, the effect of the (Ca2+)o on cell proliferation was studied. The increased (Ca2+)o (up to 10 mM) produced a significant increase in the cell numbers. This mitogenic effect of (Ca2+)o was inhibited by the co-treatment with a CaSR antagonist. From these results, the (Ca2+)o-induced (Ca2+)i elevation in the MMC is coupled with the extracellular calcium sensing receptor. Furthermore, (Ca2+)o produces a mitogenic effect in MMCs.
Animals
;
Calcium/metabolism
;
Cell Line
;
Cell Proliferation
;
Inositol 1,4,5-Trisphosphate/metabolism
;
Mesangial Cells/*cytology/*metabolism
;
Mice
;
RNA, Messenger/genetics/metabolism
;
Receptors, Calcium-Sensing/genetics/*metabolism
;
Research Support, Non-U.S. Gov't
8.Changes of sarcoplamic reticular Ca(2+)-ATPase and IP(3)-I receptor mRNA expression in patients with atrial fibrillation.
Kejiang CAO ; Xiaojie XIA ; Qijun SHAN ; Zhengqiang CHEN ; Xin CHEN ; Yuanzhu HUANG
Chinese Medical Journal 2002;115(5):664-667
OBJECTIVETo investigate changes in the expression of sarcoplamic reticular Ca(2+)-ATPase (SERCA) and IP(3)-I receptors (IP(3)R(1)) mRNA in patients with atrial fibrillation.
METHODSThirty-eight patients with mitral stenosis undergoing open heart surgery were studied. 100 mg of atrial tissue was obtained during surgery from the right appendage and the right atrium. The amount of messenger ribonucleic acid (mRNA) amount of SERCA and IP(3)R(1) was measured by reverse transcription-polymerase chain reaction (RT-PCR) and normalized to the mRNA levels of glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
RESULTSLevels of mRNA expression of SERCA in patients with AF, as compared with subjects in sinus rhythm, was lower and that of IP(3)R(1) was higher. The longer AF was sustained, the higher the levels of mRNA. There was no significant difference between right atrial free wall and right appendage.
CONCLUSIONSThe expression changes of SERCA and IP3R mRNA may correlate with the initiation or maintenance of AF.
Adult ; Aged ; Atrial Fibrillation ; genetics ; pathology ; Calcium Channels ; genetics ; Calcium-Transporting ATPases ; genetics ; Female ; Gene Expression ; Humans ; Inositol 1,4,5-Trisphosphate Receptors ; Male ; Middle Aged ; RNA, Messenger ; genetics ; metabolism ; Receptors, Cytoplasmic and Nuclear ; genetics ; Reverse Transcriptase Polymerase Chain Reaction ; Sarcoplasmic Reticulum Calcium-Transporting ATPases
9.Expression of type I inositol 1,4,5-triphosphate receptor on rat glomerular and afferent arterioles in a model of liver cirrhosis.
Jing-yan WANG ; Hong-yan LIU ; Pei LIU
Chinese Journal of Hepatology 2004;12(10):609-611
OBJECTIVETo study the expression of type I inositol 1,4,5-triphosphate receptor in rat glomerular and afferent arterioles in a model of liver cirrhosis and study the role of cross-membrane message transduction in the pathogenesis of hepatorenal syndrome.
METHODSIn a rat model of carbontetrachloride liver cirrhosis, the expression of type I inositol 1,4,5-triphosphate receptor (IP3R) on glomerular and afferent arterioles was measured by immunohistochemical method.
RESULTSIn the experimental group, 30 rats were used to make a model of liver cirrhosis. 11 rats survived during the experiment. The expression of type I IP3R on glomerular and afferent arterioles was 4.97+/-1.34 and 4.09+/-1.14 in the liver cirrhosis group, and it was 2.43+/-1.67 and 1.83+/-1.32 in the normal control rats. The differences between these two groups are statistically significant (t = 2.28, P = 0.0458).
CONCLUSIONExpression of type I IP3 receptor on rat glomerular and afferent arterioles in a model of liver cirrhosis indicated that the mechanism of cross-membrane message transduction plays a very important role in the pathogenesis of hepatorenal syndrome.
Animals ; Arterioles ; metabolism ; Calcium Channels ; biosynthesis ; genetics ; Carbon Tetrachloride ; Carbon Tetrachloride Poisoning ; Inositol 1,4,5-Trisphosphate Receptors ; Kidney ; metabolism ; Kidney Glomerulus ; blood supply ; metabolism ; Liver Cirrhosis, Experimental ; chemically induced ; complications ; metabolism ; Male ; Random Allocation ; Rats ; Rats, Wistar ; Receptors, Cytoplasmic and Nuclear ; biosynthesis ; genetics ; Renal Artery ; metabolism
10.Effect of Chaiqin Chengqi Decoction on cholecystokinin receptor 1-mediated signal transduction of pancreatic acinar cells in acute necrotizing pancreatitis rats.
Jia GUO ; Tao JIN ; Zi-Qi LIN ; Xiao-Xiang WANG ; Xiao-Nan YANG ; Qing XIA ; Ping XUE
Chinese journal of integrative medicine 2015;21(1):29-35
OBJECTIVETo investigate the effect of Chaiqin Chengqi Decoction (,CQCQD) on cholecystokinin receptor 1 (CCKR1)-mediated signal transduction of pancreatic acinar cell in rats with acute necrotic pancreatitis (ANP).
METHODSTwenty-seven Sprague-Dawley rats were randomized into three groups: the control group, the ANP group, and the CQCQD group (9 in each group). ANP rats were induced by two intraperitoneal injections of 8% L-arginine (pH=7.0, 4.4 g/kg) over a 2-h period. Rats were treated with 1.5 mL/100 g body weight of CQCQD (CQCQD group) or physiological saline (control and ANP groups) at 2 h interval. And 6 h after induction, pancreatic tissues were collected for histopathological examination. Pancreatic acinar cells were isolated for determination of CCKR1 mRNA and protein expression, phospholipase C (PLC) and inositol-1,4,5-triphosphate (IP3), and determination of fluorescence intensity (FI) as a measure of intracellular calcium ion concentration [Ca(2+)]i.
RESULTSThe pancreatic histopathological score (6.2 ± 1.1) and the levels of PLC (1,187.2 ± 228.2 μg/mL) and IP3 (872.2 ± 88.4 μg/mL) of acinar cells in the ANP group were higher than those in the control (2.8 ± 0.4, 682.5 ± 121.8 μg/mL, 518.4 ± 115.8 μg/mL) and the CQCQD (3.8 ± 0.8, 905.3 ± 78.5 μg/mL, 611.0 ± 42.5 μg/mL) groups (P<0.05). [Ca(2+)]i FI for the ANP group (34.8±27.0) was higher than that in the control (5.1 ± 2.2) and CQCQD (12.6 ± 2.5) groups (P<0.05). The expression of pancreatic acinar cell CCKR1 mRNA in the ANP group was up-regulated (expression ratio=1.761; P=0.024) compared with the control group. The expression of pancreatic acinar cell CCKR1 mRNA in the CQCQD group was down-regulated (expression ratio=0.311; P=0.035) compared with the ANP group. The ratio of gray values of the CCKR1 and β-actin in the ANP group (1.43 ± 0.17) was higher than those in the control (0.70 ± 0.15) and CQCQD (0.79 ± 0.11) groups (P<0.05).
CONCLUSIONSPancreatic acinar cell calcium overload of ANP induced by L-arginine was related to the up-regulated expressions of pancreatic acinar cell CCKR1 mRNA and protein. CQCQD can down-regulate expressions of pancreatic acinar cell CCKR1 mRNA and protein to reduce the PLC and IP3 of pancreatic acinar cells, relieving the calcium overload and reducing the pathological changes in rats with ANP.
Acinar Cells ; drug effects ; metabolism ; Animals ; Blotting, Western ; Calcium ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Fluorescence ; Gene Expression Regulation ; drug effects ; Inositol 1,4,5-Trisphosphate ; metabolism ; Pancreas ; pathology ; Pancreatitis, Acute Necrotizing ; drug therapy ; pathology ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Receptors, Cholecystokinin ; genetics ; metabolism ; Signal Transduction ; drug effects ; Type C Phospholipases ; metabolism