1.Serological survey on antibodies to influenza A viruses subtype H1, H3, H5 and H9 of population in Shanghai.
Xi-Hong LV ; Chen-Yan JIANG ; Yan-Bing ZHOU
Chinese Journal of Epidemiology 2009;30(3):302-302
Abattoirs
;
manpower
;
Adult
;
Antibodies, Viral
;
blood
;
China
;
Humans
;
Influenza A Virus, H1N1 Subtype
;
immunology
;
Influenza A Virus, H3N2 Subtype
;
immunology
;
Influenza A Virus, H3N8 Subtype
;
immunology
;
Influenza A Virus, H5N1 Subtype
;
immunology
;
Influenza A Virus, H9N2 Subtype
;
immunology
;
Influenza A virus
;
classification
;
immunology
;
Influenza, Human
;
epidemiology
;
prevention & control
;
virology
;
Middle Aged
;
Population Surveillance
;
methods
;
Seroepidemiologic Studies
;
Young Adult
3.Expression of AIV subtype H5HA, H7HA and H9HA hemagglutinin gene in Pichia pastoris.
Yi-Ming XU ; Ning-Yi JIN ; Zhi-Ping XIA ; Ming-Xiao MA ; Hui-Jun LU ; Song HAN ; Kuo-Shi JIN ; Guo-Dong LIANG
Chinese Journal of Biotechnology 2006;22(2):231-236
The expression of the hemagglutinins of Avian influenza virus H5 H7and H9 subtypes was studied in this article by Pichia pastoris, one of the eukaryotis expression systems. Three reconstructed expression plasmids and engineering strains, named pPIC9K-H5HA, pPIC9K-H7HA, pPIC9K-H9HA and GS115/pPIC9K-H5HA, GS115/pPIC9K-H7HA, GS115/pPIC9K-H9HA repectively, were obtained. The reconstructed yeast engineering strains were identified by MD and MM plate selecting and PCR. The induced interests proteins were examined by SDS-PAGE and Western-bloting,the results showed that the interest genes were expressed exactly. And this will be helpful in the future study of antigen detection and antibody detection kit, as well in the subunit vaccines developing.
Animals
;
Hemagglutinin Glycoproteins, Influenza Virus
;
biosynthesis
;
genetics
;
Influenza A Virus, H5N1 Subtype
;
genetics
;
Influenza A Virus, H7N7 Subtype
;
genetics
;
Influenza A Virus, H9N2 Subtype
;
genetics
;
Pichia
;
genetics
;
metabolism
4.Research of real-time fluorescent PCR in the rapid differential detection of H5, H9, H7 subtype avian influenza inactivated vaccines.
Jian-Feng HAN ; Yi-Bao NING ; Li SONG ; Cheng-Huai YANG
Chinese Journal of Biotechnology 2007;23(5):953-957
Specific primers and TaqMan MGB probes were designed with Primer Express 2.0 software according to the conserved region of the H5, H9, H7 subtype AIV hemagglutinin gene to make research of real-time fluorescent one-step PCR in the differential detection of H5, H9, H7 subtype avian influenza inactivated vaccines. The result showed that the method was specific and reproducible. No cross-reaction was discovered with other avian disease vaccines. Real-time fluorescent PCR provided a specific, sensitive, rapid and convenient method for the subtype identification of avian influenza inactivated vaccines.
Animals
;
Hemagglutinin Glycoproteins, Influenza Virus
;
immunology
;
Humans
;
Influenza A Virus, H5N1 Subtype
;
immunology
;
Influenza A Virus, H7N7 Subtype
;
immunology
;
Influenza A Virus, H9N2 Subtype
;
immunology
;
Influenza A virus
;
classification
;
immunology
;
Influenza Vaccines
;
analysis
;
classification
;
Reverse Transcriptase Polymerase Chain Reaction
;
methods
;
Vaccines, Inactivated
;
analysis
5.Tracking the emergence of pandemic Influenza A/H1N1/2009 and its interaction with seasonal influenza viruses in Singapore.
Julian W T TANG ; Chun Kiat LEE ; Hong Kai LEE ; Tze Ping LOH ; Lily CHIU ; Paul A TAMBYAH ; Evelyn S C KOAY
Annals of the Academy of Medicine, Singapore 2010;39(4):291-294
INTRODUCTIONSince the emergence of the pandemic influenza A/H1N1/2009 virus in April 2009, diagnostic testing in many countries has revealed the rapid displacement and then replacement of circulating seasonal influenza viruses by this novel virus.
MATERIALS AND METHODSIn-house seasonal and pandemic influenza-specific polymerase chain reaction assays were introduced and/or developed at the Molecular Diagnosis Centre (MDC) at the National University Hospital (NUH), Singapore. These assays have been used to test all samples received from in-patients, out-patients, staff and visitors for suspected pandemic influenza A/H1N1/2009 infection.
RESULTSPrior to the arrival of the pandemic A/H1N1/2009 virus in Singapore at the end of May 2009, seasonal influenza A/H3N2 predominated in this population, with very little seasonal influenza A/H1N1 and B viruses detected. Within about 1 month of its arrival in Singapore (mainly during June to July 2009), this pandemic virus rapidly displaced seasonal influenza A/H3N2 to become the predominant strain in the Singaporean population served by MDC/NUH.
CONCLUSIONSRealtime molecular techniques have allowed the prompt detection of different influenza subtypes during this current pandemic, which has revealed the displacement/replacement of previously circulating seasonal subtypes with A/H1N1/2009. Although some of this may be explained by immunological cross-reactivity between influenza subtypes, more studies are required.
Communicable Diseases, Emerging ; Cross Reactions ; Disease Outbreaks ; Humans ; Influenza A Virus, H1N1 Subtype ; isolation & purification ; Influenza B virus ; isolation & purification ; Influenza, Human ; classification ; diagnosis ; epidemiology ; Influenzavirus C ; isolation & purification ; Molecular Diagnostic Techniques ; Polymerase Chain Reaction ; Singapore ; epidemiology
6.The study of multiple RT-PCR-based reverse dot blot hybridization technique for detecting influenza viruses.
Liang YANG ; Xiao-mei ZHANG ; Xiao-guang ZHANG ; Jing MA ; Min WANG ; Le-ying WEN ; Da-yan WANG ; Tian BAI ; Yue-long SHU ; Yong-hua QIAN ; Yi ZENG
Chinese Journal of Experimental and Clinical Virology 2010;24(5):383-385
OBJECTIVETo establish a multiplex RT-PCR-based reverse dot blot hybridization technique to detect influenza viruses.
METHODSObtain the HA nucleotide sequences of seasonal influenza H1N1, seasonal influenza H3N2, influenza H1N1 and human avian influenza H5N1 from GenBank. Design primers in conservative district and probes t in high variable region respectively, after analyzing the HA nucleotide sequences of influenza virus through the Vector NTI 9.0. Establish and optimize multiple RT-PCR system by comparing amplification efficiency and specificity at different primer concentrations. Establish the reverse dot hybridization system after optimizing the concentration of probes. To compare the sensitivity and specificity of this technique and the general RT-PCR Method through extracting the viral RNA of the mentioned influenza virus which are to be the reference substance.
RESULTSSuccessfully establish a multiplex RT-PCR-based reverse dot blot hybridization technique for detecting influenza viruses. This technique is 100-1000 times more sensitive than gel electrophoresis method, and it has a good specificity.
CONCLUSIONSuccessfully established multiplex RT-PCR-based reverse dot blot hybridization technique for detecting influenza viruses.
Humans ; Influenza A Virus, H1N1 Subtype ; genetics ; isolation & purification ; Influenza A Virus, H3N2 Subtype ; genetics ; isolation & purification ; Influenza A Virus, H5N1 Subtype ; genetics ; isolation & purification ; Influenza, Human ; diagnosis ; virology ; Nucleic Acid Hybridization ; methods ; Reverse Transcriptase Polymerase Chain Reaction ; methods ; Sensitivity and Specificity
7.A broadly neutralizing human monoclonal antibody against the hemagglutinin of avian influenza virus H7N9.
Jingxin LI ; Li ZHANG ; Linlin BAO ; Yuxiao WANG ; Lin QIU ; Jialei HU ; Rong TANG ; Huiyan YU ; Jun SHAN ; Yan LI ; Chuan QIN ; Fengcai ZHU
Chinese Medical Journal 2022;135(7):799-805
BACKGROUND:
The new emerging avian influenza A H7N9 virus, causing severe human infection with a mortality rate of around 41%. This study aims to provide a novel treatment option for the prevention and control of H7N9.
METHODS:
H7 hemagglutinin (HA)-specific B cells were isolated from peripheral blood plasma cells of the patients previously infected by H7N9 in Jiangsu Province, China. The human monoclonal antibodies (mAbs) were generated by amplification and cloning of these HA-specific B cells. First, all human mAbs were screened for binding activity by enzyme-linked immunosorbent assay. Then, those mAbs, exhibiting potent affinity to recognize H7 HAs were further evaluated by hemagglutination-inhibiting (HAI) and microneutralization in vitro assays. Finally, the lead mAb candidate was selected and tested against the lethal challenge of the H7N9 virus using murine models.
RESULTS:
The mAb 6-137 was able to recognize a panel of H7 HAs with high affinity but not HA of other subtypes, including H1N1 and H3N2. The mAb 6-137 can efficiently inhibit the HA activity in the inactivated H7N9 virus and neutralize 100 tissue culture infectious dose 50 (TCID50) of H7N9 virus (influenza A/Nanjing/1/2013) in vitro, with neutralizing activity as low as 78 ng/mL. In addition, the mAb 6-137 protected the mice against the lethal challenge of H7N9 prophylactically and therapeutically.
CONCLUSION
The mAb 6-137 could be an effective antibody as a prophylactic or therapeutic biological treatment for the H7N9 exposure or infection.
Animals
;
Antibodies, Monoclonal/therapeutic use*
;
Antibodies, Neutralizing/therapeutic use*
;
Antibodies, Viral
;
Hemagglutinins
;
Humans
;
Influenza A Virus, H1N1 Subtype
;
Influenza A Virus, H3N2 Subtype
;
Influenza A Virus, H7N9 Subtype
;
Influenza Vaccines
;
Influenza in Birds
;
Influenza, Human/prevention & control*
;
Mice
8.Phylogenetic analysis of the neuraminidase genes of subtype N1 viruses in domestic ducks in eastern China.
Bao-Feng QIU ; Wu-Jie LIU ; Ying-Hua TANG ; Da-Xin PENG ; Xiu-Fan LIU
Chinese Journal of Virology 2009;25(2):131-136
To examine the phylogenetic information regarding the gene pool of AIV in domestic ducks in eastern China, the NA genes of twenty-six viruses isolated during 2002-2006, including two H1N1 strains, tenH3N1 strains and fourteen HSN1 strains, which reflected the predominant N1 subtype viruses were subjected to phylogenetic analysis. The results indicated that AIVs of N1 subtype circulating in domestic ducks in eastern China were undergoing a gradual evolution. Analysis of the deduced amino acid sequences revealed that NAs from all isolated H5N1 viruses had a 20-aa deletion in the stalk region (residues 49-68), whereas no deletion was seen in the NAs from other HA subtype viruses. The viruses of H3N1 and H1N1 might have a propensity for reassortment of NA genes, whereas no direct evidence of reassortment of NA gene was obtained in H5N1 viruses.
Animals
;
Birds
;
China
;
DNA, Viral
;
analysis
;
Evolution, Molecular
;
Humans
;
Influenza A Virus, H1N1 Subtype
;
classification
;
genetics
;
Influenza A Virus, H3N2 Subtype
;
classification
;
genetics
;
Influenza A Virus, H5N1 Subtype
;
classification
;
enzymology
;
genetics
;
Influenza A virus
;
classification
;
enzymology
;
genetics
;
Influenza in Birds
;
virology
;
Influenza, Human
;
virology
;
Neuraminidase
;
genetics
;
Phylogeny
;
Poultry Diseases
;
virology
;
Sequence Alignment
;
Sequence Deletion
10.Visual detection of H1 subtype and identification of N1, N2 subtype of avian influenza virus by reverse transcription loop-mediated isothermal amplification assay.
Yi PENG ; Zhi-Xun XIE ; Jie GUO ; Chen-Yu ZHOU ; Jia-Bo LIU ; Yao-Shan PANG ; Xian-Wen DENG ; Zhi-Qin XIE ; Li-Ji XIE ; Qing FAN ; Si-Si LUO
Chinese Journal of Virology 2013;29(2):154-161
In order to visually detect H1, N1 and N2 subtype of avian influenza virus (AIV), three reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays were developed. According to the sequences of AIV gene available in GenBank, three degenerate primer sets specific to HA gene of H1 subtype AIV, NA gene of N1 and N2 subtype AIV were designed, and the reaction conditions were optimized. The results showed that all the assays had no cross-reaction with other subtype AIV and other avian respiratory pathogens, and the detection limit was higher than that of conventional RT-PCR. These assays were performed in water bath within 50 minutes. Without opening tube, the amplification result could be directly determined by inspecting the color change of reaction system as long as these assays were fin-ished. Fourteen specimens of H1N1 subtype and eight specimens of H1N2 subtype of AIV were identified from the 120 clinical samples by RT-LAMP assays developed, which was consistent with that of virus isolation. These results suggested that the three newly developed RT-LAMEP assays were simple, specific and sensitive and had potential for visual detection of H1, N1 and N2 subtype of AIV in field.
Animals
;
Chickens
;
DNA Primers
;
genetics
;
Ducks
;
Influenza A Virus, H1N1 Subtype
;
classification
;
genetics
;
isolation & purification
;
Influenza A Virus, H1N2 Subtype
;
classification
;
genetics
;
isolation & purification
;
Influenza A virus
;
classification
;
genetics
;
isolation & purification
;
Influenza in Birds
;
diagnosis
;
virology
;
Nucleic Acid Amplification Techniques
;
methods
;
Poultry Diseases
;
diagnosis
;
virology
;
Reverse Transcription
;
Turkeys