1.Impact of Temperature on Influenza A Status during Global Warming Hiatus.
Biomedical and Environmental Sciences 2019;32(7):554-557
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Animals
;
Birds
;
virology
;
Child
;
Child, Preschool
;
Global Warming
;
Humans
;
Infant
;
Influenza A virus
;
Influenza, Human
;
epidemiology
;
Middle Aged
;
Orthomyxoviridae Infections
;
epidemiology
;
Temperature
;
Young Adult
2.Genetic characteristics of hemagglutinin and neuraminidase of avian influenza A (H7N9) virus in Guizhou province, 2014-2017.
Y H WAN ; L ZHUANG ; Q N ZHENG ; L J REN ; L FU ; W J JIANG ; G P TANG ; D Z ZHANG ; S J LI
Chinese Journal of Epidemiology 2018;39(11):1465-1471
Objective: To understand the molecular characteristics of hemagglutinin (HA) and neuraminidase (NA) as well as the disease risk of influenza virus A H7N9 in Guizhou province. Methods: RNAs were extracted and sequenced from HA and NA genes of H7N9 virus strains obtained from 18 cases of human infection with H7N9 virus and 6 environmental swabs in Guizhou province during 2014-2017. Then the variation and the genetic evolution of the virus were analyzed by using a series of bioinformatics software package. Results: Homology analysis of HA and NA genes revealed that 2 strains detected during 2014-2015 shared 98.8%-99.2% and 99.2% similarities with vaccine strains A/Shanghai/2/2013 and A/Anhui/1/2013 recommended by WHO, respectively. Two strains detected in 2016 and 14 strains detected in 2017 shared 98.2%-99.3% and 97.6%-98.8% similarities with vaccine strain A/Hunan/02650/2016, respectively. Other 6 stains detected in 2017 shared 99.1%-99.4% and 98.9%-99.3% similarities with strain A/Guangdong/17SF003/2016, respectively. Phylogenetic analysis showed that all the strains were directly evolved in the Yangtze River Delta evolution branch, but they were derived from different small branch. PEVPKRKRTAR↓GLF was found in 6 of 24 strains cleavage site sequences of HA protein, indicating the characteristic of highly pathogenic avian influenza virus. Mutations A134V, G186V and Q226L at the receptor binding sites were found in the HA. All the strains had a stalk deletion of 5 amino acid residue "QISNT" in NA protein, and drug resistance mutation R294K occurred in strain A/Guizhou-Danzhai/18980/2017. In addition, potential glycosylation motifs mutations NCS42NCT were found in the NA of 9 of 24 strains. Conclusions: HA and NA genes of avian influenza A (H7N9) virus showed genetic divergence in Guizhou province during 2014-2017. The mutations of key sites might enhance the virulence of the virus, human beings are more susceptible to it. Hence, the risk of infection is increasing.
Animals
;
Base Sequence
;
Birds
;
China/epidemiology*
;
Genome, Viral
;
Hemagglutinin Glycoproteins, Influenza Virus/immunology*
;
Hemagglutinins/genetics*
;
Humans
;
Influenza A Virus, H7N9 Subtype/isolation & purification*
;
Influenza in Birds
;
Influenza, Human/virology*
;
Neuraminidase/genetics*
;
Phylogeny
;
RNA, Viral/genetics*
;
Sequence Analysis, DNA
3.Characterization of Avian Influenza A (H7N9) Virus Prevalence in Humans and Poultry in Huai'an, China: Molecular Epidemiology, Phylogenetic, and Dynamics Analyses.
Peng Fei YANG ; Qing Li YAN ; Chun Cheng LIU ; Ya Dong XING ; Min Hui ZHANG ; Qiang GAO ; Hao YU ; Hai Bo YAO ; Nan Jiang HE
Biomedical and Environmental Sciences 2016;29(10):742-753
OBJECTIVETo trace the source of human H7N9 cases in Huai'an and elucidate the genetic characterization of Huai'an strains associated with both humans and birds in live poultry market.
METHODSAn enhanced surveillance was implemented when the first human H7N9 case was confirmed in Huai'an. Clinical specimens, cloacal swabs, and fecal samples were collected and screened by real-time reverse transcription-polymerase chain reaction (RT-PCR) for H7N9 virus. The positive samples were subjected to further RT-PCR and genome sequencing. The phylodynamic patterns of H7N9 virus within and separated from Huai'an and evolutionary dynamics of the virus were analyzed.
RESULTSSix patients with H7N9 infection were previously exposed to live poultry market and presented symptoms such as fever (>38.0 °C) and headaches. Results of this study support the hypothesis that live poultry markets were the source of human H7N9 exposure. Phylogenetic analysis revealed that all novel H7N9 viruses, including Huai'an strains, could be classified into two distinct clades, A and B. Additionally, the diversified H7N9 virus circulated in live poultry markets in Huai'an. Interestingly, the common ancestors of the Huai'an H7N9 virus existed in January 2012. The mean nucleotide substitution rates for each gene segment of the H7N9 virus were (3.09-7.26)×10-3 substitutions/site per year (95% HPD: 1.72×10-3 to 1.16×10-2).
CONCLUSIONOverall, the source of exposure of human H7N9 cases in Huai'an was live poultry market, and our study highlights the presence of divergent genetic lineage of H7N9 virus in both humans and poultry specimens in Huai'an.
Adult ; Aged ; Aged, 80 and over ; Animals ; China ; epidemiology ; Evolution, Molecular ; Female ; Humans ; Influenza A Virus, H7N9 Subtype ; classification ; genetics ; isolation & purification ; Influenza in Birds ; epidemiology ; virology ; Influenza, Human ; epidemiology ; virology ; Male ; Middle Aged ; Molecular Epidemiology ; Phylogeny ; Poultry ; Prevalence
4.Avian influenza virus in various environments and risk factors for the contamination of live poultry markets during winter and spring season in Zhejiang province.
Xiaoxiao WANG ; Wei CHENG ; Zhao YU ; Haiyan MAO ; Enfu CHEN
Chinese Journal of Preventive Medicine 2016;50(3):250-254
OBJECTIVETo evaluate the prevalence of avian influenza virus in various environment and the influence factors for subtype H7 prevalence in live poultry markets.
METHODSWe collected environmental samples from various environments across 11 cities of Zhejiang province between October 2014 and March 2015. Cage surface swabs, chopping board surface swabs, feces, water for cleaning, drinking water and swabs of other surfaces were collected. A total of 6 457 samples were collected, including 4 487 samples from poultry markets, 820 samples from poultry farms, 715 samples from backyard poultry pens, 118 samples from poultry processing factories, 118 samples from wild bird habitats and 86 samples from other sites. The chi-squared test was used to compare virus prevalence among sample types, sites types, and poultry markets types. Binary logistic regression was used to analyze factors on H7 subtype prevalence in poultry markets.
RESULTSOf 6 457 samples, 32.54% (2 101) samples were positive for avian influenza, with 3.67% (237) positive for H5 subtype, 12.02%(776) positive for H7 subtype, 11.77%(760) positive for H9 subtype. Of 237 live poultry markets, 33.8% (80) were positive for H7 subtype. The prevalence of influenza A in poultry processing factories was the highest at 43.72% (101/231) (χ(2)=737.80, P<0.001). Poultry markets were contaminated most seriously by subtype H5/H7/H9 with the prevalence of 27.55% (1 236/4 487) (χ(2)=436.37, P<0.001). Compared with markets with 1 type of poultry, OR was 4.58 (95%CI: 1.63-12.87) for markets with ≥2 types of poultry.
CONCLUSIONLive poultry markets and poultry processing factories were contaminated most seriously by avian influenza. The types of poultry might be the factor which influenced the subtype H7 prevalence in poultry markets.
Animals ; Birds ; Environment ; Feces ; Food-Processing Industry ; Influenza A virus ; isolation & purification ; Influenza in Birds ; epidemiology ; Poultry ; virology ; Risk Factors ; Seasons
5.Pathogenicity of H5N8 virus in chickens from Korea in 2014.
Byung Min SONG ; Hyun Mi KANG ; Eun Kyoung LEE ; Jipseol JEONG ; Yeojin KANG ; Hee Soo LEE ; Youn Jeong LEE
Journal of Veterinary Science 2015;16(2):237-240
In 2014, two genetically distinct H5N8 highly pathogenic avian influenza (HPAI) viruses were isolated from poultry and wild birds in Korea. The intravenous pathogenicity indices for the two representative viruses were both 3.0. Mortality of chickens intranasally inoculated with the two H5N8 viruses was 100% with a mean death times of 2.5 and 4.5 days. Mortality rates of the contact groups for the two H5N8 viruses were 33.3% and 66.6%. Our study showed that transmissibility of the novel H5N8 viruses was different from that of previously identified H5N1 HPAI viruses, possibly due to genetic changes.
Animals
;
Chickens
;
Disease Outbreaks/veterinary
;
Influenza A virus/*pathogenicity/*physiology
;
Influenza in Birds/*mortality/transmission/virology
;
Poultry Diseases/*mortality/transmission/virology
;
Republic of Korea/epidemiology
;
Virulence
6.H9N2 influenza virus in China: a cause of concern.
Protein & Cell 2015;6(1):18-25
The recent human infection with avian influenza virus revealed that H9N2 influenza virus is the gene donor for H7N9 and H10N8 viruses infecting humans. The crucial role of H9N2 viruses at the animal-human interface might be due to the wide host range, adaptation in both poultry and mammalian, and extensive gene reassortment. As the most prevalent subtype of influenza viruses in chickens in China, H9N2 also causes a great economic loss for the poultry industry, even under the long-term vaccination programs. The history, epidemiology, biological characteristics, and molecular determinants of H9N2 influenza virus are reviewed in this paper. The contribution of H9N2 genes, especially RNP genes, to the infection of humans needs to be investigated in the future.
Animals
;
Chickens
;
virology
;
China
;
epidemiology
;
Humans
;
Influenza A Virus, H7N9 Subtype
;
genetics
;
Influenza A Virus, H9N2 Subtype
;
genetics
;
immunology
;
physiology
;
Influenza in Birds
;
epidemiology
;
transmission
;
virology
;
Influenza, Human
;
epidemiology
;
transmission
;
virology
;
Vaccination
;
Viral Proteins
;
classification
;
metabolism
7.An overview of surveillance of avian influenza viruses in wild birds.
Yun ZHU ; Jing-Hong SHI ; Yue-Long SHU
Chinese Journal of Virology 2014;30(3):310-317
Wild birds (mainly Anseriformes and Charadriiformes) are recognized as the natural reservoir of avian influenza viruses (AIVs). The long-term surveillance of AIVs in wild birds has been conducted in North America and Europe since 1970s. More and more surveillance data revealed that all the HA and NA subtypes of AIVs were identified in the wild ducks, shorebirds, and gulls, and the AIVs circulating in wild birds were implicated in the outbreaks of AIVs in poultry and humans. Therefore, the AIVs in wild birds pose huge threat to poultry industry and human health. To gain a better understanding of the ecology and epidemiology of AIVs in wild birds, we summarize the transmission of AIVs between wild birds, poultry, and humans, the main results of surveillance of AIVs in wild birds worldwide and methods for surveillance, and the types of samples and detection methods for AIVs in wild birds, which would be vital for the effective control of avian influenza and response to possible influenza pandemic.
Animals
;
Animals, Wild
;
virology
;
Birds
;
virology
;
Humans
;
Influenza A virus
;
genetics
;
isolation & purification
;
physiology
;
Influenza in Birds
;
epidemiology
;
transmission
;
virology
;
Influenza, Human
;
epidemiology
;
transmission
;
virology
;
Sentinel Surveillance
;
veterinary
8.Why H7N9 bird flu may cause scare in China?
Xiangyi KONG ; Yang LIU ; Jian GUAN ; Yi YANG ; Renzhi WANG
Chinese Medical Journal 2014;127(1):193-195
9.Retrospective analysis of human avian influenza A (H10N8) virus infection in Jiangxi province.
Weijie FU ; Maohong HU ; Xiaoqing LIU ; Yun XIE ; Ying XIONG ; Huanhong PAN
Chinese Journal of Epidemiology 2014;35(10):1131-1134
OBJECTIVETo analyze and discuss the source and epidemic disposition of human infection with avian influenza A (H10N8) virus.
METHODSEpidemiological surveys were used to collect related data and RT-PCR was applied to detect the specimens collected from cases, close contacts related exposure to live poultry markets. Data were analyzed descriptively.
RESULTSThree cases were discovered by surveillance on patients with severe pneumonia, two of the three died, but one in the hospital with the course over 6 months. All the three cases had histories of exposure to live poultry or related markets. Lower respiratory tract gargle aspirate samples of 3 patients were detected by Nanchang Municipal Center for Disease Control and Prevention (CDC) and Jiangxi Provincial CDC, and the results showed the influenza 2009pdmH1, H3, H5, H7, H9 subtypes negative. Specimen of patient 1 and 2 was positive for influenza A universal primers. Specimen of patient 3 was positive for H10N8 detected by Chinese National Influenza Center. All 33 close contacts of the patients were negative for H10N8 virus. Positive rate of the total poultry environmental specimens collected from the cases exposure markets was 5.19%. No new cases were found, after the prevention and control messages were implemented.
CONCLUSIONThree cases of H10N8 avian influenza virus infection province might be associated with exposure to live poultry market in Jiangxi.
Animals ; China ; epidemiology ; Commerce ; Epidemics ; Humans ; Influenza A Virus, H10N8 Subtype ; isolation & purification ; Influenza in Birds ; epidemiology ; Influenza, Human ; epidemiology ; virology ; Pneumonia ; virology ; Poultry ; virology ; Retrospective Studies ; Reverse Transcriptase Polymerase Chain Reaction
10.Investigating geographical spread of the human infection with avian influenza A (H7N9)virus by online knowledge analysis of the live bird trade with a distributed focused crawler.
Shan LU ; Chen CHEN ; Weiwen YU ; Haiyin WANG ; Pengcheng DU ; Biao KAN ; Jianguo XU
Chinese Journal of Epidemiology 2014;35(3):228-230

Result Analysis
Print
Save
E-mail