1.Influenza DNA vaccine: an update.
Chinese Medical Journal 2004;117(1):125-132
2.Progress in new vaccine strategies against influenza: a review.
Zhihui LIU ; Tao JIANG ; Ede QIN ; Duoliang RAN ; Chengfeng QIN
Chinese Journal of Biotechnology 2012;28(5):550-556
Influenza, caused by influenza virus, is a serious respiratory illness which poses a global public health threat. Vaccination is the primary strategy for the prevention and control of influenza. Although both inactivated vaccines and the live attenuated vaccines are effective in preventing influenza, the current vaccines have poor efficacy in the elderly and fail to provide protection against heterosubtype viruses. Development of a safer and more effective influenza vaccine that provides broad cross protection, overcoming the intrinsic limitation of the current vaccines, has been a scientific challenge. During the past decades, structural biology, reverse genetic and other virological technologies developed quickly and sped the progress of influenza vaccinology. Some new strategies for developing influenza vaccine have been generated, produced encouraging results, which showed great prospect as next-generation of influenza vaccines.
Disease Outbreaks
;
prevention & control
;
Hemagglutinin Glycoproteins, Influenza Virus
;
immunology
;
Humans
;
Influenza Vaccines
;
biosynthesis
;
immunology
;
Influenza, Human
;
immunology
;
prevention & control
;
virology
;
Orthomyxoviridae
;
immunology
;
Vaccines, Attenuated
;
immunology
;
Vaccines, Inactivated
;
immunology
4.Roles of the hemagglutinin of influenza A virus in viral entry and development of antiviral therapeutics and vaccines.
Shibo JIANG ; Runming LI ; Lanying DU ; Shuwen LIU
Protein & Cell 2010;1(4):342-354
Seasonal influenza epidemics and influenza pandemics caused by influenza A virus (IAV) has resulted in millions of deaths in the world. The development of anti-IAV vaccines and therapeutics is urgently needed for prevention and treatment of IAV infection and for controlling future influenza pandemics. Hemagglutinin (HA) of IAV plays a critical role in viral binding, fusion and entry, and contains the major neutralizing epitopes. Therefore, HA is an attractive target for developing anti-IAV drugs and vaccines. Here we have reviewed the recent progress in study of conformational changes of HA during viral fusion process and development of HA-based antiviral therapeutics and vaccines.
Antiviral Agents
;
therapeutic use
;
Epidemics
;
Hemagglutinins
;
physiology
;
Humans
;
Influenza A virus
;
immunology
;
Influenza Vaccines
;
immunology
;
Influenza, Human
;
immunology
;
therapy
;
Pandemics
6.Research of real-time fluorescent PCR in the rapid differential detection of H5, H9, H7 subtype avian influenza inactivated vaccines.
Jian-Feng HAN ; Yi-Bao NING ; Li SONG ; Cheng-Huai YANG
Chinese Journal of Biotechnology 2007;23(5):953-957
Specific primers and TaqMan MGB probes were designed with Primer Express 2.0 software according to the conserved region of the H5, H9, H7 subtype AIV hemagglutinin gene to make research of real-time fluorescent one-step PCR in the differential detection of H5, H9, H7 subtype avian influenza inactivated vaccines. The result showed that the method was specific and reproducible. No cross-reaction was discovered with other avian disease vaccines. Real-time fluorescent PCR provided a specific, sensitive, rapid and convenient method for the subtype identification of avian influenza inactivated vaccines.
Animals
;
Hemagglutinin Glycoproteins, Influenza Virus
;
immunology
;
Humans
;
Influenza A Virus, H5N1 Subtype
;
immunology
;
Influenza A Virus, H7N7 Subtype
;
immunology
;
Influenza A Virus, H9N2 Subtype
;
immunology
;
Influenza A virus
;
classification
;
immunology
;
Influenza Vaccines
;
analysis
;
classification
;
Reverse Transcriptase Polymerase Chain Reaction
;
methods
;
Vaccines, Inactivated
;
analysis
7.Virological characterization of influenza B virus in mainland China during 2011-2012.
Wei-Juan HUANG ; Min-Ju TAN ; Yu LAN ; Yan-Hui CHENG ; Zhao WANG ; Xi-Yan LI ; Jun-Feng GUO ; He-Jiang WEI ; Yao-Yao CHEN ; Ning XIAO ; Bin LIU ; Hong-Tao SUI ; Xiang ZHAO ; Da-Yan WANG ; Yue-Long SHU
Chinese Journal of Virology 2013;29(1):32-38
In order to understand the prevalence and variation of influenza B viruses, the antigenic and genetic characteristics of influenza B viruses circulating in Mainland China during April, 2011 to March, 2012 were analyzed. The results showed the B Victoria lineage viruses were much more prevalent than B Yamagata lineage during this period, phylogenetic analysis showed vast majority of Victoria lineage viruses belong to genetic group 1, intra-clade reassortant between HA1 and NA gene was identified in a minor proportion of the viruses. 72.8% of the B/Victoria-lineage viruses were antigenically closely related to the vaccine strain B/Brisbane/60/2008. B Yamagata component was not included in the trivalent influenza vaccine in China during the study period, however vast majority of B Yamagata lineage viruses were antigenically and genetically closely related to the representative virus B/Hubei-Wujiagang/158/2009(97.8%) and B/Sichuan-Anyue/139/2011(85.2%) in China, reassortant between HA1 and NA was not identified in B Yamagata lineage viruses. Overall, the predominant circulating influenza B viruses in 2011-2012 season in China were matched by current influenza vaccine and the selected representative viruses were proved to represent the antigenic and genetic characteristics of the circulating viruses.
China
;
Humans
;
Influenza B virus
;
classification
;
genetics
;
immunology
;
Influenza Vaccines
;
genetics
;
immunology
;
Phylogeny
;
Time Factors
9.Assessment of the safety and efficacy of low pathogenic avian influenza (H9N2) virus in inactivated oil emulsion vaccine in laying hens.
Jeong Hwa SHIN ; Jong Seo MO ; Jong Nyeo KIM ; In Pil MO ; Bong Do HA
Journal of Veterinary Science 2016;17(1):27-34
In Korea, several outbreaks of low pathogenic AI (H9N2) viral infections leading to decreased egg production and increased mortality have been reported on commercial farms since 1996, resulting in severe economic losses. To control the H9N2 LPAI endemic, the Korea Veterinary Authority has permitted the use of the inactivated H9N2 LPAI vaccine since 2007. In this study, we developed a killed vaccine using a low pathogenic H9N2 AI virus (A/chicken/Korea/ADL0401) and conducted safety and efficacy tests in commercial layer farms while focusing on analysis of factors that cause losses to farms, including egg production rate, egg abnormality, and feed efficiency. The egg production rate of the control group declined dramatically 5 days after the challenge. There were no changes in feed consumption of all three groups before the challenge, but rates of the control declined afterward. Clinical signs in the vaccinated groups were similar, and a slight decline in feed consumption was observed after challenge; however, this returned to normal more rapidly than the control group and commercial layers. Overall, the results of this study indicate that the safety and efficacy of the vaccine are adequate to provide protection against the AI field infection (H9N2) epidemic in Korea.
Animals
;
Chickens
;
Emulsions
;
Female
;
Influenza A Virus, H9N2 Subtype/*immunology
;
Influenza Vaccines/*immunology/*standards
;
Influenza in Birds/immunology/prevention & control
;
Oviparity
;
Specific Pathogen-Free Organisms
;
Vaccines, Inactivated/immunology
10.Multi-epitope DNA vaccines against avian influenza in chickens.
Jin-Mei PENG ; Guang-Zhi TONG ; Yun-Feng WANG ; Hua-Ji QIU
Chinese Journal of Biotechnology 2003;19(5):623-627
Multiple epitopes from one or more viruses can be lined up and co-expressed in one vector to generate multi-epitopes DNA vaccines. In the study, four recombinant plasmids were constructed based on HA and NP gene of avian influenza virus (AIV) (H5N1): (1) pIRES/HA, carrying the complete HA gene; (2) pIRES/tHA, carrying a truncated HA gene fragment of major neutralizing antigenic epitopes; (3) pIRES/tHA-NPep, in which three CTL epitopes of NP gene of AIV were fused to the truncated HA from the C-terminal; and (4) pIRES/tHA-NPep-IFN-gamma, which was constructed by replacing neo gene in pIRES/ tHA-NPep with IFN-y of chicken. Fifty five SPF chickens were randomly divided into five groups and immunized with the above four constructs and control plasmid. Each chicken was intramuscally immunized with 200 microg plasmid DNA three times in a two-week interval. Two weeks after the third immunization, chickens were injected with H5N1 subtype avian influenza virus. Before the virus loading no detectable antibodies to HA were found in the chicken serum; but high levels of HI antibodies were detected in the serum of the survived chickens. The percentages of CD4+ and CD8+ T lymphocyte in peripheral blood of immunized chickens increased steadily after the vaccination. After virus loading all chickens in the control group died within three to eight days, and the survival rates of the four DNA vaccine groups were as follows: pIRES/HA, 54.5%; pIRES/tHA, 30%, pIRES/ tHA-NPep, 36.3%, pIRES/tHA-NPep-IFN-gamma, 50%. These results indicated that multi-epitopes DNA immunization can induce immune response and protect chickens from homologous virus loading.
Animals
;
Chickens
;
Epitopes
;
immunology
;
Influenza A Virus, H5N1 Subtype
;
immunology
;
pathogenicity
;
Influenza in Birds
;
immunology
;
prevention & control
;
virology
;
Vaccines, DNA
;
immunology