1.Cross-Protective Immune Responses Elicited by Live Attenuated Influenza Vaccines.
Yonsei Medical Journal 2013;54(2):271-282
The desired effect of vaccination is to elicit protective immune responses against infection with pathogenic agents. An inactivated influenza vaccine is able to induce the neutralizing antibodies directed primarily against two surface antigens, hemagglutinin and neuraminidase. These two antigens undergo frequent antigenic drift and hence necessitate the annual update of a new vaccine strain. Besides the antigenic drift, the unpredictable emergence of the pandemic influenza strain, as seen in the 2009 pandemic H1N1, underscores the development of a new influenza vaccine that elicits broadly protective immunity against the diverse influenza strains. Cold-adapted live attenuated influenza vaccines (CAIVs) are advocated as a more appropriate strategy for cross-protection than inactivated vaccines and extensive studies have been conducted to address the issues in animal models. Here, we briefly describe experimental and clinical evidence for cross-protection by the CAIVs against antigenically distant strains and discuss possible explanations for cross-protective immune responses afforded by CAIVs. Potential barriers to the achievement of a universal influenza vaccine are also discussed, which will provide useful guidelines for future research on designing an ideal influenza vaccine with broad protection without causing pathogenic effects such as autoimmunity or attrition of protective immunity against homologous infection.
Adaptive Immunity
;
Antigens, Viral/immunology
;
*Cross Protection
;
Genome, Viral
;
Humans
;
Immunity, Innate
;
Influenza Vaccines/*immunology/therapeutic use
;
Influenza, Human/*prevention & control
;
Orthomyxoviridae/genetics/immunology
;
Vaccines, Attenuated
2.Protective efficacy of a high-growth reassortant swine H3N2 inactivated vaccine constructed by reverse genetic manipulation.
Feng WEN ; Ji Hong MA ; Hai YU ; Fu Ru YANG ; Meng HUANG ; Yan Jun ZHOU ; Ze Jun LI ; Guang Zhi TONG
Journal of Veterinary Science 2014;15(3):381-388
Novel reassortant H3N2 swine influenza viruses (SwIV) with the matrix gene from the 2009 H1N1 pandemic virus have been isolated in many countries as well as during outbreaks in multiple states in the United States, indicating that H3N2 SwIV might be a potential threat to public health. Since southern China is the world's largest producer of pigs, efficient vaccines should be developed to prevent pigs from acquiring H3N2 subtype SwIV infections, and thus limit the possibility of SwIV infection at agricultural fairs. In this study, a high-growth reassortant virus (GD/PR8) was generated by plasmid-based reverse genetics and tested as a candidate inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice by challenging them with another H3N2 SwIV isolate [A/Swine/Heilongjiang/1/05 (H3N2) (HLJ/05)]. Prime and booster inoculation with GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting antibodies and IgG antibodies. Complete protection of mice against H3N2 SwIV was observed, with significantly reduced lung lesion and viral loads in vaccine-inoculated mice relative to mock-vaccinated controls. These results suggest that the GD/PR8 vaccine may serve as a promising candidate for rapid intervention of H3N2 SwIV outbreaks in China.
Animals
;
Female
;
Influenza A Virus, H3N2 Subtype/*genetics/immunology
;
Influenza Vaccines/genetics/immunology/*therapeutic use
;
Mice
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections/immunology/*prevention & control/virology
;
Reassortant Viruses/genetics/immunology
;
Reverse Genetics/methods/*veterinary
;
Swine
;
Swine Diseases/immunology/*prevention & control/virology
;
Vaccines, Inactivated
;
Virus Replication