1.Influenza DNA vaccine: an update.
Chinese Medical Journal 2004;117(1):125-132
2.Research of real-time fluorescent PCR in the rapid differential detection of H5, H9, H7 subtype avian influenza inactivated vaccines.
Jian-Feng HAN ; Yi-Bao NING ; Li SONG ; Cheng-Huai YANG
Chinese Journal of Biotechnology 2007;23(5):953-957
Specific primers and TaqMan MGB probes were designed with Primer Express 2.0 software according to the conserved region of the H5, H9, H7 subtype AIV hemagglutinin gene to make research of real-time fluorescent one-step PCR in the differential detection of H5, H9, H7 subtype avian influenza inactivated vaccines. The result showed that the method was specific and reproducible. No cross-reaction was discovered with other avian disease vaccines. Real-time fluorescent PCR provided a specific, sensitive, rapid and convenient method for the subtype identification of avian influenza inactivated vaccines.
Animals
;
Hemagglutinin Glycoproteins, Influenza Virus
;
immunology
;
Humans
;
Influenza A Virus, H5N1 Subtype
;
immunology
;
Influenza A Virus, H7N7 Subtype
;
immunology
;
Influenza A Virus, H9N2 Subtype
;
immunology
;
Influenza A virus
;
classification
;
immunology
;
Influenza Vaccines
;
analysis
;
classification
;
Reverse Transcriptase Polymerase Chain Reaction
;
methods
;
Vaccines, Inactivated
;
analysis
3.Hemagglutinin stem reactive antibody response in individuals immunized with a seasonal influenza trivalent vaccine.
Xiaopeng ZHAO ; Kun QIN ; Jinlei GUO ; Donghong WANG ; Zi LI ; Wenfei ZHU ; Liqi LIU ; Dayan WANG ; Yuelong SHU ; Jianfang ZHOU
Protein & Cell 2015;6(6):453-457
Adult
;
Antibodies, Viral
;
blood
;
immunology
;
Cross Reactions
;
Hemagglutinin Glycoproteins, Influenza Virus
;
immunology
;
Humans
;
Influenza A Virus, H1N1 Subtype
;
immunology
;
Influenza A Virus, H3N2 Subtype
;
immunology
;
Influenza B virus
;
immunology
;
Influenza Vaccines
;
immunology
;
Orthomyxoviridae
;
immunology
;
Seasons
;
Vaccination
6.Roles of the hemagglutinin of influenza A virus in viral entry and development of antiviral therapeutics and vaccines.
Shibo JIANG ; Runming LI ; Lanying DU ; Shuwen LIU
Protein & Cell 2010;1(4):342-354
Seasonal influenza epidemics and influenza pandemics caused by influenza A virus (IAV) has resulted in millions of deaths in the world. The development of anti-IAV vaccines and therapeutics is urgently needed for prevention and treatment of IAV infection and for controlling future influenza pandemics. Hemagglutinin (HA) of IAV plays a critical role in viral binding, fusion and entry, and contains the major neutralizing epitopes. Therefore, HA is an attractive target for developing anti-IAV drugs and vaccines. Here we have reviewed the recent progress in study of conformational changes of HA during viral fusion process and development of HA-based antiviral therapeutics and vaccines.
Antiviral Agents
;
therapeutic use
;
Epidemics
;
Hemagglutinins
;
physiology
;
Humans
;
Influenza A virus
;
immunology
;
Influenza Vaccines
;
immunology
;
Influenza, Human
;
immunology
;
therapy
;
Pandemics
7.Safety and immunological effect of domestic split influenza virus vaccine.
Pei-Ru ZHANG ; Xiao-Ping ZHU ; Liang-Jun ZHOU ; You-Quan LIU ; Ya FAN ; Guo CHEN ; Zhi CHEN ; Yan LIU ; Hong-Ying SUN ; Jian-Lin WU
Chinese Journal of Preventive Medicine 2009;43(7):615-618
OBJECTIVETo evaluate the safety and immunological effect of domestic split influenza virus vaccine.
METHODSAll 606 subjects were divided into three groups by under 6, 16-60 and above 60 years old. Each age group was divided as study group (n = 213), control group 1 (n = 195) and control group 2 (n= 198) by Table of Random Number, one domestic vaccine and two imported vaccines were respectively inoculated in three group people. The differences of clinical side effect rate, antibody positive rate, protective rate and geometric mean titer (GMT) of these three vaccines were compared by using the statistical software with statistical significance of P < 0.05.
RESULTSThe side effect rate of study group, control group 1 and control group 2 was 3.76% (8/213), 4.10% (8/195), and 3.54% (7/198), respectively without statistical significance(chi2 = 0.87, P =0.93). The positive seroconversion rates of H1N1, H3N2 and B in these three groups were respectively 89.2% (190/213), 63.4% (135/213), 86.4% (184/213), 88.7% (173/195), 61.5% (120/195), 87.2% (170/195), 87.9% (174/198), 61.6% (122/198) and 84.8% (168/198). There were no statistical significance in the total positive seroconversion rate of each antibody type (chi2(H1N1) = 0.94, P(H1N1) = 0.63; chi2(H3N2) = 0.94, P(H3N2) = 0.63; chi2(B) = 0.75, P(B) = 0.69). The average growth multiple of H1N1, H3N2 and B in these three groups were 10.7, 7.3, 8.4, 10.5, 6.3, 8.3, 10.2, 7.1, 8.8 times. There were no statistical significances in the GMT growth multiple of each antibody type (F(H1N1) = 0.35, P(H1N1) = 0.70; F(H3N2) = 2.22, P(H3N2) = 0.11; F(B) = 1.51, P(B) = 0.35). The antibody protective rates of H1N1, H3N2 and B were 100% (213/213), 70.0% (149/213), 95.3% (203/213), 100% (195/195), 66.7% (130/195), 97.9% (191/195), 99.5% (197/198), 66.2% (131/198), 96.5% (191/198) respectively. There was no statistical difference among the three vaccines (chi2(H1N1) = 2.04, P(H1N1) = 0.36; chi2(H3N2) = 0.74, P(H3N2) = 0.69; chi2(B) = 0.42, P(B) = 0.82).
CONCLUSIONThe domestic influenza split vaccine might be suitable for colony vaccination for its having clinical safety and immunological effect.
Adolescent ; Adult ; Child ; Humans ; Influenza A Virus, H1N1 Subtype ; immunology ; Influenza A Virus, H3N2 Subtype ; immunology ; Influenza Vaccines ; adverse effects ; immunology ; Influenza, Human ; prevention & control ; Middle Aged ; Young Adult
8.Selection pressure analysis of H3N2 influenza virus from China between 1992 and 2012.
Yu LAN ; Xiang ZHAO ; Xi-Yan LI ; Ye ZHANG ; Jun-Feng GUO ; Ming LI ; Wei-Juan HUANG ; He-Jiang WEI ; Yan-Hui CHENG ; Min-Ju TAN ; Zhao WANG ; Lei YANG ; Ning XIAO ; Da-Yan WANG ; Yue-Long SHU
Chinese Journal of Experimental and Clinical Virology 2013;27(3):177-180
OBJECTIVEIn order to investigate the relationship between selection pressure and the prevalence of antigenic clusters, we sequenced and analyzed the H3N2 influenza virus from China between 1992 and 2012.
METHODSThe H3N2 influenza virus (n = 1206) in China from 1992 to 2012 was analyzed, include global selection pressure and sites positive selection pressure analysis.
RESULTSConsidering all the H3N2 influenza viruses during these 21 years, a total of four amino acid sites subject to positive selection. The global selection pressure varies with the variation of different antigenic clusters and three years with peak bottom selection pressure were identified.
CONCLUSIONThe global selection pressure rise from the peak bottom, a new antigenic clusters will appear andprevalent in the population, indicating the best time to replace the vaccine strain.
Antigens, Viral ; immunology ; China ; Influenza A Virus, H3N2 Subtype ; genetics ; immunology ; Influenza Vaccines ; Selection, Genetic ; Time Factors
9.Virological characterization of influenza B virus in mainland China during 2011-2012.
Wei-Juan HUANG ; Min-Ju TAN ; Yu LAN ; Yan-Hui CHENG ; Zhao WANG ; Xi-Yan LI ; Jun-Feng GUO ; He-Jiang WEI ; Yao-Yao CHEN ; Ning XIAO ; Bin LIU ; Hong-Tao SUI ; Xiang ZHAO ; Da-Yan WANG ; Yue-Long SHU
Chinese Journal of Virology 2013;29(1):32-38
In order to understand the prevalence and variation of influenza B viruses, the antigenic and genetic characteristics of influenza B viruses circulating in Mainland China during April, 2011 to March, 2012 were analyzed. The results showed the B Victoria lineage viruses were much more prevalent than B Yamagata lineage during this period, phylogenetic analysis showed vast majority of Victoria lineage viruses belong to genetic group 1, intra-clade reassortant between HA1 and NA gene was identified in a minor proportion of the viruses. 72.8% of the B/Victoria-lineage viruses were antigenically closely related to the vaccine strain B/Brisbane/60/2008. B Yamagata component was not included in the trivalent influenza vaccine in China during the study period, however vast majority of B Yamagata lineage viruses were antigenically and genetically closely related to the representative virus B/Hubei-Wujiagang/158/2009(97.8%) and B/Sichuan-Anyue/139/2011(85.2%) in China, reassortant between HA1 and NA was not identified in B Yamagata lineage viruses. Overall, the predominant circulating influenza B viruses in 2011-2012 season in China were matched by current influenza vaccine and the selected representative viruses were proved to represent the antigenic and genetic characteristics of the circulating viruses.
China
;
Humans
;
Influenza B virus
;
classification
;
genetics
;
immunology
;
Influenza Vaccines
;
genetics
;
immunology
;
Phylogeny
;
Time Factors