1.Epidemiology of 1977 Russian flu.
Yan GAO ; Shan-Hua SUN ; Wei LIU ; Yuan-Yuan YAO ; Tian BAI ; Xi-Yan LI ; Cui-Ling XU ; Yuan-Ji GUO ; De-Xin LI ; Yue-Long SHU
Chinese Journal of Virology 2009;25 Suppl():36-38
2.Discrimination of novel influenza A (H1N1) and influenza A and influenza B viruses using a single-tube multiplex RT-real time PCR.
Hong ZHANG ; Yong-Qiang HE ; Yan-Jun ZHANG ; Zhen WANG ; Zhen LI
Chinese Journal of Preventive Medicine 2012;46(3):273-276
OBJECTIVETo establish and evaluate a single-tube multiplex RT-real time PCR assay for detecting novel influenza A H1N1, influenza A and influenza B viruses (called "IV" for short) simultaneously.
METHODSA total of 213 clinical specimens of influenza-like patient's throat swab were collected during October 2010 and April 2011. 152 bp fragment in HA gene of novel influenza A H1N1 virus, 128 bp fragment in M gene of influenza A virus and 107 bp fragment in NP gene of influenza B virus were chosen as the target genes for multiplex RT-real time PCR, a specific primers and probes labeled with different fluoresceins were designed. The standard plasmid was constructed using in vitro transcription assay, and the standard curve was established. The reproducibility, specificity and sensitivity of the assay were evaluated. Furthermore, RNA extracted from 213 clinical specimens of throat swab was detected and verified by sequencing.
RESULTSThe corresponding standard curves of novel influenza A H1N1 virus, influenza A virus and influenza B virus were Y = - 3.46 lgX + 46.985, Y = - 3.49 lgX + 37.709, Y = - 3.51 lgX + 38.889, respectively; Y was cycle threshold (Ct), and lgX was logarithm value of virus replication number. The standard curve coefficient was 0.998. The detection limit of this assay was 10(2) copies/microl in one reaction. The specificity was strong. 39 (18.3%), 63 (29.6%) and 23 (10.8%) of 213 clinical specimens detected were positive for novel influenza A H1N1 virus RNA,influenza A virus RNA and influenza B virus RNA respectively. The positive samples were verified by sequencing.
CONCLUSIONThe single-tube multiplex RT-real time PCR assay developed in this study for detecting and identifying novel influenza A H1N1, influenza A and influenza B viruses simultaneously was rapid, specific and sensitive.
Humans ; Influenza A Virus, H1N1 Subtype ; genetics ; isolation & purification ; Influenza A virus ; genetics ; isolation & purification ; Influenza B virus ; genetics ; isolation & purification ; Reverse Transcriptase Polymerase Chain Reaction ; methods
3.The study of multiple RT-PCR-based reverse dot blot hybridization technique for detecting influenza viruses.
Liang YANG ; Xiao-mei ZHANG ; Xiao-guang ZHANG ; Jing MA ; Min WANG ; Le-ying WEN ; Da-yan WANG ; Tian BAI ; Yue-long SHU ; Yong-hua QIAN ; Yi ZENG
Chinese Journal of Experimental and Clinical Virology 2010;24(5):383-385
OBJECTIVETo establish a multiplex RT-PCR-based reverse dot blot hybridization technique to detect influenza viruses.
METHODSObtain the HA nucleotide sequences of seasonal influenza H1N1, seasonal influenza H3N2, influenza H1N1 and human avian influenza H5N1 from GenBank. Design primers in conservative district and probes t in high variable region respectively, after analyzing the HA nucleotide sequences of influenza virus through the Vector NTI 9.0. Establish and optimize multiple RT-PCR system by comparing amplification efficiency and specificity at different primer concentrations. Establish the reverse dot hybridization system after optimizing the concentration of probes. To compare the sensitivity and specificity of this technique and the general RT-PCR Method through extracting the viral RNA of the mentioned influenza virus which are to be the reference substance.
RESULTSSuccessfully establish a multiplex RT-PCR-based reverse dot blot hybridization technique for detecting influenza viruses. This technique is 100-1000 times more sensitive than gel electrophoresis method, and it has a good specificity.
CONCLUSIONSuccessfully established multiplex RT-PCR-based reverse dot blot hybridization technique for detecting influenza viruses.
Humans ; Influenza A Virus, H1N1 Subtype ; genetics ; isolation & purification ; Influenza A Virus, H3N2 Subtype ; genetics ; isolation & purification ; Influenza A Virus, H5N1 Subtype ; genetics ; isolation & purification ; Influenza, Human ; diagnosis ; virology ; Nucleic Acid Hybridization ; methods ; Reverse Transcriptase Polymerase Chain Reaction ; methods ; Sensitivity and Specificity
4.Establishment of a method for rapid detection of the nucleic acid of the novel A (H1N1) influenza virus.
Da-Yan WANG ; Rong-Bao GAO ; Xiao-Dan LI ; Wei WANG ; Le-Ying WEN ; Shu-Mei ZOU ; Xiang ZHAO ; Xi-Yan LI ; Yu LAN ; Lei YANG ; Jun-Feng GUO ; Zi LI ; Yan-Hui CHENG ; Min-Jju TAN ; Xin-Wan LI ; Yu-Hong ZENG ; Yuan-Ji GUO ; De-Xin LI ; Yue-Long SHU
Chinese Journal of Virology 2009;25 Suppl():1-3
A new flu caused by a novel influenza A(H1N1) virus has spread over the United States, Mexico and more than 40 other countries. And because of the immediate global concern, WHO has announced that the current level of influenza pandemic alert is raised to phase 5, indicating approaching of an influenza pandemic. As patients suffering from the influenza A (H1N1) have the similar symptoms as patients with seasonal influenza, differential detection and identification of the influenza virus have to depend on specific laboratory tests. We have successfully developed a RT-PCR based method for detection of the influenza A (H1N1) virus, and had applied the method to detection of clinical samples.
Humans
;
Influenza A Virus, H1N1 Subtype
;
genetics
;
isolation & purification
;
Influenza, Human
;
virology
;
RNA, Viral
;
genetics
;
Reverse Transcriptase Polymerase Chain Reaction
;
methods
5.Emerged Pdm09 influenza virus increased purifying selection of seasonal H1N1 influenza virus.
Yu LAN ; Wei-Juan HUANG ; Hong-Tao SUI ; Xi-Yan LI ; Xiang ZHAO ; Ming LI ; Yao-Yao CHEN ; Jun-Feng GUO ; Yan-Hui CHENG ; Min-Ju TAN ; Zhao WANG ; Ning XIAO ; He-Jiang WEI ; Da-Yan WANG ; Yue-Long SHU
Chinese Journal of Virology 2013;29(2):143-147
Pdm09 virus outbreak occurred in Mainland China in May 2009, a few months later, the prevalence of seasonal H1N1(sH1N1) influenza virus that already circulated in human for tens of years began to decline and disappeared afterwards. To identify the reason for the rapid decline of sH1N1 in mainland China, we sequenced the HA1 of sH1N1 during 2006-2011, and then analyzed the selective pressure in different phases. Our results showed before Pdm09 outbreak, the omega value was 0. 36 while after Pdm09 outbreak the omega value was 0. 28 and significant difference (t test, P<0. 05) was identified. We concluded that sH1N1 obtained stronger purifying selection after Pdm09 outbreak in China. This might one of the major reasons causing the disappearance of sH1N1 in human.
China
;
Humans
;
Influenza A Virus, H1N1 Subtype
;
classification
;
genetics
;
isolation & purification
;
Influenza, Human
;
virology
;
Phylogeny
;
Seasons
;
Selection, Genetic
6.Laboratory confirmation of the first influenza A (H1N1) imported case in Mainland China.
Wei WANG ; Ming PAN ; Guo-Hui CHANG ; Xiao-Dan LI ; Tian-Shu LI ; Cheng-Feng QIN ; Na JIA ; Le-Ying WEN ; Rong-Bao GAO ; Wen-Bin TONG ; Shu-Sen HE ; Da-Yan WANG ; Jun-Feng GUO ; Yu LAN ; Lei YANG ; Xiang ZHAO ; Xi-Yan LI ; Zi LI ; Shu-Mei ZOU ; Qing-Yu ZHU ; Yuan-Ji GUO ; Wu-Chun CAO ; De-Xin LI ; Yue-Long SHU
Chinese Journal of Virology 2009;25 Suppl():4-7
The clinical throat swab specimen of an imported suspected case of influenza A (H1N1) was detec ted with real-time PCR, RT-PCR and subsequently confirmed by gene sequencing. The presence of influ enza A (H1N1) virus confirmed the first case with A (H1N1) infection in Mainland China.
China
;
Humans
;
Influenza A Virus, H1N1 Subtype
;
classification
;
genetics
;
isolation & purification
;
Influenza, Human
;
virology
;
Molecular Sequence Data
;
Phylogeny
7.Antigenic and genetic study of influenza virus circulated in China in 2006.
Ye ZHANG ; Xiang ZHAO ; Jun-feng GUO ; He-jiang WEI ; Yan-hui CHENG ; Xin-wan LI ; Cui-lin XU ; Yuan-ji GUO ; Yue-long SHU
Chinese Journal of Experimental and Clinical Virology 2007;21(4):304-306
OBJECTIVETo analyse seasonal influenza epidemic situation in 2006, and to analyse the genetic and antigenic characteristics of viral hemagglutinin (HA) gene.
METHODSThe single-way hemagglutination inhibition (HI) tests were used to test the antigenic characteristics of these viruses from influenza surveillance network, and the HA1 genes were sequenced based on the antigenic test results according to different isolation times and sites.
RESULTSThe influenza virus types A and B co-circulated in 2006. influenza A H1N1 subtype and Victoria-like B influenza circulated preponderantly during this epidemic season. The HA1 gene sequence of H1N1 viruses showed that 192, 193, 196, 198 positions (located at antigenic site B) have an amino acid substitute, compared with the last circulating strain A/Hubeihongshan/53/2005(H1N1). Two amino acid changes at 142 and 144 positions compared with A/Yunnan/1145/2005 (H3N2). There was no change in influenza B viruses either Victoria-like B or Yamagata-like B virus, i.e . antigenic characteristics is analogous to B/shenzhen/155/2005 and B/tianjin/144/2005, respectively.
CONCLUSIONThe H1N1 and H3N2 influenza viruses had changing antigenic and genetic characteristics in 2006. Influenza virus types B did not change in 2006.
Amino Acids ; analysis ; China ; Hemagglutination Inhibition Tests ; Hemagglutinin Glycoproteins, Influenza Virus ; chemistry ; genetics ; immunology ; Influenza A Virus, H1N1 Subtype ; immunology ; isolation & purification ; Influenza A Virus, H3N2 Subtype ; immunology ; isolation & purification ; Influenza B virus ; immunology ; isolation & purification ; Time Factors
8.Analysis of etiology of four pandemic influenza A (H1N1) virus outbreaks in Shandong province, in 2009.
Zhong LI ; Ti LIU ; Yi LIN ; Sheng-Yang ZHANG ; Jun LIU ; Wen-Guo JIANG ; Xian-Jun WANG ; Ai-Qiang XU ; Zhen-Qiang BI
Chinese Journal of Preventive Medicine 2010;44(12):1069-1074
OBJECTIVETo isolate and identify the influenza virus that caused four influenza-like-illness outbreaks in Jining city of Shandong Province in 2009 and analyze the genetic characteristics of hemagglutinin (HA) and neuraminidase (NA) gene, the variation of these genes were studied.
METHODS34 nasopharyngeal swabs from fever patients of four influenza-like-illness outbreaks were collected and diagnosed by real time quantitative RT-PCR method. The positive samples were incubated and cultured for virus. HA and NA genes of isolated pandemic influenza A (H1N1) virus were sequenced, the homology analysis was done with DNAStar software and the genetic evolution and amino acid substitutions were performed with Mega 4.0 software. The sequences were compared with WHO recommended vaccine virus, native reference virus.
RESULTSSeventeen of 34 nasopharyngeal swabs were positive, 11 pandemic influenza A (H1N1) viruses were isolated and HA and NA genes of 7 strains were sequenced. Phylogenetic analysis for hemagglutinin and neuraminidase gene of Shandong outbreak strains showed that there were 98.4% - 99.6% and 99.2% - 100.0% sequence identity. Compared with WHO-recommended vaccine strain, the reference virus in mainland China strain, eleven amino acids were changed for HA protein, including position 38, 40, 56, 90, 100, 145, 172, 173, 220, 303 and 338, and 38, 40, 303 of HA protein were located in the antigenic determination C cluster, 172, 173 in the D cluster, 56 in the E cluster, site 40 of HA protein were glycosylated. In NA protein, seven amino acids were changed, including position 80, 106, 241, 248, 351, 369 and 386, site 40 of NA protein were glycosylated. No mutations of 275 in NA protein were found.
CONCLUSIONThe HA and NA genes of the epidemic strains showed high homology, some mutations in the HA and NA proteins were found, the antigenic site and glycosylation site of some strains were changed during the epidemic process.
China ; epidemiology ; Disease Outbreaks ; Glycosylation ; Hemagglutinin Glycoproteins, Influenza Virus ; genetics ; Humans ; Influenza A Virus, H1N1 Subtype ; classification ; genetics ; isolation & purification ; Influenza, Human ; epidemiology ; virology ; Neuraminidase ; genetics
9.Type and subtype distribution of influenza virus and genetic evolution of hemagglutinin in Shanghai area in duration of 2004 - 2008.
Ji-xing YANG ; Li-wen JU ; Lu-fang JIANG ; Qiang SHI ; Qing-wu JIANG ; Yu-yan ZHANG ; Yan-bing ZHOU ; Hui-guo SHEN ; Yi-yun TAN
Chinese Journal of Preventive Medicine 2009;43(4):305-308
OBJECTIVETo analyze the type and subtype distribution of influenza virus and the genetic evolution of hemagglutinin (HA) in Shanghai area during 2004 to 2008.
METHODSAll 962 throat swabs were collected from influenza-like patients in 5 influenza sentry hospitals and influenza outbreaks. Influenza viruses were isolated in MDCK cell lines, and then viral types and subtypes were identified. The HA of influenza A isolates selected by outbreak or sporadic patients in different areas and epidemic seasons were sequenced and analyzed by phylogenetic trees.
RESULTSA/H3N2, accounting for 54.9% (162/295), was the dominate subtype in recent years, but less popular in the end of 2005 to the middle of 2006 with 0% (0/16)and 23.5% (8/34) of positive specimen, respectively. There were more A/H1N1 isolates in 2005 - 2006 with 21.4% (12/56), 43.8% (7/16) and 76.5% (26/34) of positive specimen, respectively, but declined obviously in 2007 - 2008 accounting for only 0% (0/44) and 5.0% (7/139). Influenza B virus was more popular in 2004 to 2005 with 42.9% (24/56) and 56.2% (9/16), respectively, and not isolated from 2006 to 2007, then increased in 2008 accounting for 34.5% (48/139). Phylogenetic tree of HA showed that A/H1N1 isolates in the same year clustered from 2005 to 2008, and most A/H3N2 isolated were homologous in the same year during 2004 - 2008 while some were inserted to the clusters of near years and more distinguished sequences appeared. A/H1N1 and A/H3N2 isolates were all similar to the vaccine strains recommended by WHO.
CONCLUSIONThe distribution of influenza type and subtype kept on changing each year, but A/H3N2 dominated in most years. A/H1N1 and A/H3N2 in the same year clustered, but some A/H3N2 of near years were and evolved faster with more distinguished strains appeared in same interval. Generally, HA of influenza A isolates in Shanghai during 2004 to 2008 were similar to the WHO reference strains.
China ; epidemiology ; Evolution, Molecular ; Hemagglutinin Glycoproteins, Influenza Virus ; genetics ; Humans ; Influenza A Virus, H1N1 Subtype ; classification ; genetics ; isolation & purification ; Influenza A Virus, H3N2 Subtype ; classification ; genetics ; isolation & purification ; Influenza, Human ; epidemiology ; virology