1.Influenza DNA vaccine: an update.
Chinese Medical Journal 2004;117(1):125-132
3.Progress in new vaccine strategies against influenza: a review.
Zhihui LIU ; Tao JIANG ; Ede QIN ; Duoliang RAN ; Chengfeng QIN
Chinese Journal of Biotechnology 2012;28(5):550-556
Influenza, caused by influenza virus, is a serious respiratory illness which poses a global public health threat. Vaccination is the primary strategy for the prevention and control of influenza. Although both inactivated vaccines and the live attenuated vaccines are effective in preventing influenza, the current vaccines have poor efficacy in the elderly and fail to provide protection against heterosubtype viruses. Development of a safer and more effective influenza vaccine that provides broad cross protection, overcoming the intrinsic limitation of the current vaccines, has been a scientific challenge. During the past decades, structural biology, reverse genetic and other virological technologies developed quickly and sped the progress of influenza vaccinology. Some new strategies for developing influenza vaccine have been generated, produced encouraging results, which showed great prospect as next-generation of influenza vaccines.
Disease Outbreaks
;
prevention & control
;
Hemagglutinin Glycoproteins, Influenza Virus
;
immunology
;
Humans
;
Influenza Vaccines
;
biosynthesis
;
immunology
;
Influenza, Human
;
immunology
;
prevention & control
;
virology
;
Orthomyxoviridae
;
immunology
;
Vaccines, Attenuated
;
immunology
;
Vaccines, Inactivated
;
immunology
5.Observation on the effect of population-based immunization of influenza A (H1N1)2009 split-virus vaccine.
Xin-hong XU ; En-jie LU ; Yan-hui LIU ; Yue-hong WEI ; Ji-bin WU ; Gui-hua HUANG ; Qing CAO ; Hui QUAN ; Jian-xiong XU ; Yan-shan CAI ; Tie-gang LI ; Biao DI ; Ming WANG
Chinese Journal of Epidemiology 2010;31(5):587-588
7.Safety and immunological effect of domestic split influenza virus vaccine.
Pei-Ru ZHANG ; Xiao-Ping ZHU ; Liang-Jun ZHOU ; You-Quan LIU ; Ya FAN ; Guo CHEN ; Zhi CHEN ; Yan LIU ; Hong-Ying SUN ; Jian-Lin WU
Chinese Journal of Preventive Medicine 2009;43(7):615-618
OBJECTIVETo evaluate the safety and immunological effect of domestic split influenza virus vaccine.
METHODSAll 606 subjects were divided into three groups by under 6, 16-60 and above 60 years old. Each age group was divided as study group (n = 213), control group 1 (n = 195) and control group 2 (n= 198) by Table of Random Number, one domestic vaccine and two imported vaccines were respectively inoculated in three group people. The differences of clinical side effect rate, antibody positive rate, protective rate and geometric mean titer (GMT) of these three vaccines were compared by using the statistical software with statistical significance of P < 0.05.
RESULTSThe side effect rate of study group, control group 1 and control group 2 was 3.76% (8/213), 4.10% (8/195), and 3.54% (7/198), respectively without statistical significance(chi2 = 0.87, P =0.93). The positive seroconversion rates of H1N1, H3N2 and B in these three groups were respectively 89.2% (190/213), 63.4% (135/213), 86.4% (184/213), 88.7% (173/195), 61.5% (120/195), 87.2% (170/195), 87.9% (174/198), 61.6% (122/198) and 84.8% (168/198). There were no statistical significance in the total positive seroconversion rate of each antibody type (chi2(H1N1) = 0.94, P(H1N1) = 0.63; chi2(H3N2) = 0.94, P(H3N2) = 0.63; chi2(B) = 0.75, P(B) = 0.69). The average growth multiple of H1N1, H3N2 and B in these three groups were 10.7, 7.3, 8.4, 10.5, 6.3, 8.3, 10.2, 7.1, 8.8 times. There were no statistical significances in the GMT growth multiple of each antibody type (F(H1N1) = 0.35, P(H1N1) = 0.70; F(H3N2) = 2.22, P(H3N2) = 0.11; F(B) = 1.51, P(B) = 0.35). The antibody protective rates of H1N1, H3N2 and B were 100% (213/213), 70.0% (149/213), 95.3% (203/213), 100% (195/195), 66.7% (130/195), 97.9% (191/195), 99.5% (197/198), 66.2% (131/198), 96.5% (191/198) respectively. There was no statistical difference among the three vaccines (chi2(H1N1) = 2.04, P(H1N1) = 0.36; chi2(H3N2) = 0.74, P(H3N2) = 0.69; chi2(B) = 0.42, P(B) = 0.82).
CONCLUSIONThe domestic influenza split vaccine might be suitable for colony vaccination for its having clinical safety and immunological effect.
Adolescent ; Adult ; Child ; Humans ; Influenza A Virus, H1N1 Subtype ; immunology ; Influenza A Virus, H3N2 Subtype ; immunology ; Influenza Vaccines ; adverse effects ; immunology ; Influenza, Human ; prevention & control ; Middle Aged ; Young Adult
8.Highlight the significance of genetic evolution of H5N1 avian flu.
Jia-hai LU ; Ding-mei ZHANG ; Guo-ling WANG
Chinese Medical Journal 2006;119(17):1458-1464
9.A review of H7 subtype avian influenza virus.
Wen-Fei ZHU ; Rong-Bao GAO ; Da-Yan WANG ; Lei YANG ; Yun ZHU ; Yue-Long SHU
Chinese Journal of Virology 2013;29(3):245-249
Since 2002, H7 subtype avian influenza viruses (AIVs) have caused more than 100 human infection cases in the Netherlands, Italy, Canada, the United States, and the United Kingdom, with clinical illness ranging from conjunctivitis to mild upper respiratory illness to pneumonia. On March 31st, three fatal cases caused by infection of a novel reassortant H7N9 subtype were reported in Shanghai City and Anhui Province in China. With the ability of H7 subtype to cause severe human disease and the increasing isolation of subtype H7 AIVs, we highlighted the need for continuous surveillance in both humans and animals and characterization of these viruses for the development of vaccines and anti-viral drugs.
Animals
;
Chickens
;
Ducks
;
Humans
;
Influenza A virus
;
genetics
;
isolation & purification
;
pathogenicity
;
physiology
;
Influenza Vaccines
;
genetics
;
immunology
;
Influenza in Birds
;
immunology
;
prevention & control
;
virology
;
Influenza, Human
;
immunology
;
prevention & control
;
virology
;
Poultry Diseases
;
immunology
;
prevention & control
;
virology
;
Turkeys