1.The NLRP3 inflammasome activation in human or mouse cells, sensitivity causes puzzle.
Hongbin WANG ; Liming MAO ; Guangxun MENG
Protein & Cell 2013;4(8):565-568
Animals
;
Carrier Proteins
;
metabolism
;
Caspase 1
;
metabolism
;
Humans
;
Inflammasomes
;
metabolism
;
Interleukin-1beta
;
metabolism
;
Lipopolysaccharides
;
toxicity
;
Mice
;
Monocytes
;
drug effects
;
immunology
;
metabolism
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Signal Transduction
;
drug effects
2.Telmisartan reduced cerebral edema by inhibiting NLRP3 inflammasome in mice with cold brain injury.
Xin WEI ; Chen-Chen HU ; Ya-Li ZHANG ; Shang-Long YAO ; Wei-Ke MAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(4):576-583
The aim of this study was to investigate the possible beneficial role of telmisartan in cerebral edema after traumatic brain injury (TBI) and the potential mechanisms related to the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) pyrin domain-containing 3 (NLRP3) inflammasome activation. TBI model was established by cold-induced brain injury. Male C57BL/6 mice were randomly assigned into 3, 6, 12, 24, 48 and 72 h survival groups to investigate cerebral edema development with time and received 0, 5, 10, 20 and 40 mg/kg telmisartan by oral gavage, 1 h prior to TBI to determine the efficient anti-edemic dose. The therapeutic window was identified by post-treating 30 min, 1 h, 2 h and 4 h after TBI. Blood-brain barrier (BBB) integrity, the neurological function and histological injury were assessed, at the same time, the mRNA and protein expression levels of NLRP3 inflammasome, IL-1β and IL-18 concentrations in peri-contused brain tissue were measured 24 h post TBI. The results showed that the traumatic cerebral edema occurred from 6 h, reached the peak at 24 h and recovered to the baseline 72 h after TBI. A single oral dose of 5, 10 and 20 mg/kg telmisartan could reduce cerebral edema. Post-treatment up to 2 h effectively limited the edema development. Furthermore, prophylactic administration of telmisartan markedly inhibited BBB impairment, NLRP3, apoptotic speck-containing protein (ASC) and Caspase-1 activation, as well as IL-1β and IL-18 maturation, subsequently improved the neurological outcomes. In conclusion, telmisartan can reduce traumatic cerebral edema by inhibiting the NLRP3 inflammasome-regulated IL-1β and IL-18 accumulation.
Animals
;
Benzimidazoles
;
administration & dosage
;
Benzoates
;
administration & dosage
;
Blood-Brain Barrier
;
drug effects
;
Brain Edema
;
drug therapy
;
genetics
;
pathology
;
Brain Injuries, Traumatic
;
drug therapy
;
genetics
;
pathology
;
Caspase 1
;
biosynthesis
;
Gene Expression Regulation
;
drug effects
;
Humans
;
Inflammasomes
;
adverse effects
;
genetics
;
Interleukin-18
;
biosynthesis
;
Interleukin-1beta
;
biosynthesis
;
Male
;
Mice
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
biosynthesis
;
genetics
;
Signal Transduction
;
drug effects
3.Potential immunotherapies for traumatic brain and spinal cord injury.
Raj PUTATUNDA ; John R BETHEA ; Wen-Hui HU
Chinese Journal of Traumatology 2018;21(3):125-136
Traumatic injury of the central nervous system (CNS) including brain and spinal cord remains a leading cause of morbidity and disability in the world. Delineating the mechanisms underlying the secondary and persistent injury versus the primary and transient injury has been drawing extensive attention for study during the past few decades. The sterile neuroinflammation during the secondary phase of injury has been frequently identified substrate underlying CNS injury, but as of now, no conclusive studies have determined whether this is a beneficial or detrimental role in the context of repair. Recent pioneering studies have demonstrated the key roles for the innate and adaptive immune responses in regulating sterile neuroinflammation and CNS repair. Some promising immunotherapeutic strategies have been recently developed for the treatment of CNS injury. This review updates the recent progress on elucidating the roles of the innate and adaptive immune responses in the context of CNS injury, the development and characterization of potential immunotherapeutics, as well as outstanding questions in this field.
Adaptive Immunity
;
Astrocytes
;
physiology
;
Brain Injuries, Traumatic
;
immunology
;
therapy
;
Histone Deacetylases
;
therapeutic use
;
Humans
;
Immunity, Innate
;
immunology
;
Immunotherapy
;
methods
;
Inflammasomes
;
drug effects
;
physiology
;
Macrophage Activation
;
Spinal Cord Injuries
;
immunology
;
therapy
4.Improved effects of saponins from Panax japonicus on decline of cognitive function in natural aging rats via NLRP3 inflammasome pathway.
Bo RUAN ; Rui WANG ; Yuan-Jian YANG ; Dong-Fan WANG ; Jia-Wen WANG ; Chang-Cheng ZHANG ; Ding YUAN ; Zhi-Yong ZHOU ; Ting WANG
China Journal of Chinese Materia Medica 2019;44(2):344-349
The aim of this paper was to investigate the effect of total saponins from Panax japonicus( SPJ) on cognitive decline of natural aging rats and its mechanism. Thirty male SD rats of eighteen month old were randomly divided into three groups: aged group,10 mg·kg~(-1) SPJ-treated group and 30 mg·kg~(-1) SPJ-treated group. The SPJ-treated groups were given SPJ at the dosages of 10 mg·kg~(-1) and 30 mg·kg~(-1),respectively,from the age of 18 to 24 months. Aged group were lavaged the same amount of saline,10 six-month-old rats were used as control group,with 10 rats in each group. The open field test,novel object recognition and Morris water maze were performed to detect the changes of cognitive function in each group. The changes of synaptic transmission of long-term potentiation( LTP) in hippocampal CA1 region were detected by field potential recording. Western blot was used to detect the protein levels of NLRP3,ASC,caspase-1 and the changes of Glu A1,Glu A2,CAMKⅡ,CREB and phosphorylation of CAMKⅡ,CREB in each group.The results showed that SPJ could improve the decline of cognitive function in aging rats,reduce the damage of LTP in the hippocampal CA1 region of aged rats,and decrease the expression of NLRP3,ASC,caspase-1 in aging rats. At the same time,SPJ could enhance the membrane expression of AMPA receptor( Glu A1 and Glu A2),and increase the expression of p-CAMKⅡand p-CREB in aging rats.SPJ could improve cognitive decline of natural aging rats,and its mechanism may be related to regulating NLRP3 inflammasome,thus regulating the membrane expression of AMPA receptor,and enhancing the expression phosphorylation of CAMKⅡ and CREB.
Aging
;
Animals
;
CA1 Region, Hippocampal
;
physiology
;
Cognition
;
drug effects
;
Inflammasomes
;
metabolism
;
Long-Term Potentiation
;
Male
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
metabolism
;
Panax
;
chemistry
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Saponins
;
pharmacology
5.Suppression of NLRP3 inflammasome by ivermectin ameliorates bleomycin-induced pulmonary fibrosis.
Mai A ABD-ELMAWLA ; Heba R GHAIAD ; Enas S GAD ; Kawkab A AHMED ; Maha ABDELMONEM
Journal of Zhejiang University. Science. B 2023;24(8):723-733
Ivermectin is a US Food and Drug Administration (FDA)-approved antiparasitic agent with antiviral and anti-inflammatory properties. Although recent studies reported the possible anti-inflammatory activity of ivermectin in respiratory injuries, its potential therapeutic effect on pulmonary fibrosis (PF) has not been investigated. This study aimed to explore the ability of ivermectin (0.6 mg/kg) to alleviate bleomycin-induced biochemical derangements and histological changes in an experimental PF rat model. This can provide the means to validate the clinical utility of ivermectin as a treatment option for idiopathic PF. The results showed that ivermectin mitigated the bleomycin-evoked pulmonary injury, as manifested by the reduced infiltration of inflammatory cells, as well as decreased the inflammation and fibrosis scores. Intriguingly, ivermectin decreased collagen fiber deposition and suppressed transforming growth factor-β1 (TGF-β1) and fibronectin protein expression, highlighting its anti-fibrotic activity. This study revealed for the first time that ivermectin can suppress the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome, as manifested by the reduced gene expression of NLRP3 and the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), with a subsequent decline in the interleukin-1β (IL-1β) level. In addition, ivermectin inhibited the expression of intracellular nuclear factor-κB (NF-κB) and hypoxia‑inducible factor‑1α (HIF-1α) proteins along with lowering the oxidative stress and apoptotic markers. Altogether, this study revealed that ivermectin could ameliorate pulmonary inflammation and fibrosis induced by bleomycin. These beneficial effects were mediated, at least partly, via the downregulation of TGF-β1 and fibronectin, as well as the suppression of NLRP3 inflammasome through modulating the expression of HIF‑1α and NF-κB.
Animals
;
Rats
;
Anti-Inflammatory Agents
;
Bleomycin/toxicity*
;
Fibronectins/metabolism*
;
Fibrosis
;
Inflammasomes/metabolism*
;
Ivermectin/adverse effects*
;
NF-kappa B/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Pulmonary Fibrosis/drug therapy*
6.Triptolide inhibits NLRP3 inflammasome activation and ameliorates podocyte epithelial-mesenchymal transition induced by high glucose.
Wei WU ; Bu-Hui LIU ; Yi-Gang WAN ; Wei SUN ; Ying-Lu LIU ; Wen-Wen WANG ; Qi-Jun FANG ; Yue TU ; Hong-Yun YEE ; Can-Can YUAN ; Zi-Yue WAN
China Journal of Chinese Materia Medica 2019;44(24):5457-5464
The aim of this paper was to explore the effects of triptolide( TP),the effective component of Tripterygium wilfordii on improving podocyte epithelial-mesenchymal transition( EMT) induced by high glucose( HG),based on the regulative mechanisms of Nod-like receptor protein 3( NLRP 3) inflammasome in the kidney of diabetic kidney disease( DKD). The immortalized podocytes of mice in vitro were divided into the normal( N) group,the HG( HG) group,the low dose of TP( L-TP) group,the high dose of TP( HTP) group and the mannitol( MNT) group,and treated by the different measures,respectively. More specifically,the podocytes in each group were separately treated by D-glucose( DG,5 mmol·L~(-1)) or HG( 30 mmol·L~(-1)) or HG( 30 mmol·L~(-1)) + TP( 5 μg·L~(-1))or HG( 30 mmol·L~(-1)) + TP( 10 μg·L~(-1)) or DG( 5 mmol·L~(-1)) + MNT( 24. 5 mmol·L~(-1)). After the treatment of HG or TP at 24,48 and 72 h,firstly,the activation of podocyte proliferation was investigated. Secondly,the protein expression levels of the epithelial markers in podocytes such as nephrin and ZO-1,the mesenchymal markers such as collagen Ⅰ and fibronectin( FN) were detected,respectively. Finally,the protein expression levels of NLRP3 and apoptosis-associated speck-like protein( ASC) as the key signaling molecules of NLRP3 inflammasome activation,as well as the downstream effector proteins including caspase-1,interleutin( IL)-1β and IL-18 were examined,severally. The results indicated that,for the cultured podocytes in vitro,HG could cause the low protein expression levels of nephrin and ZO-1,induce the high protein expression levels of collagen Ⅰ and FN and trigger podocyte EMT. Also HG could cause the high protein expression levels of NLRP3,ASC,caspase-1,IL-1β and IL-18 and induce NLRP3 inflammasome activation. On the other hand,the co-treatment of TP( L-TP or H-TP) and HG for podocytes could recover the protein expression levels of nephrin and ZO-1,inhibit the protein expression levels of collagen Ⅰ and FN and ameliorate podocyte EMT. Also the co-treatment of TP( L-TP or H-TP) and HG could down-regulate the protein expression levels of NLRP3 and ASC,inhibit NLRP3 inflammasome activation and reduce the protein expression levels of the downstream effector molecules including caspase-1,IL-1β and IL-18. On the whole,HG could activate NLRP3 inflammasome and induce podocyte EMT in vitro. TP at the appropriate dose range could inhibit NLRP3 inflammasome activation and ameliorate podocyte EMT,which may be one of the critical molecular mechanisms of TP protecting againstpodocyte inflammatory injury in DKD.
Animals
;
Caspase 1/metabolism*
;
Cells, Cultured
;
Diabetic Nephropathies
;
Diterpenes/pharmacology*
;
Epithelial-Mesenchymal Transition
;
Epoxy Compounds/pharmacology*
;
Glucose
;
Inflammasomes/metabolism*
;
Interleukin-18/metabolism*
;
Interleukin-1beta/metabolism*
;
Mice
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Phenanthrenes/pharmacology*
;
Podocytes/drug effects*
7.NMDA Receptor Antagonist MK801 Protects Against 1-Bromopropane-Induced Cognitive Dysfunction.
Lin XU ; Xiaofei QIU ; Shuo WANG ; Qingshan WANG ; Xiu-Lan ZHAO
Neuroscience Bulletin 2019;35(2):347-361
Occupational exposure to 1-bromopropane (1-BP) induces learning and memory deficits. However, no therapeutic strategies are currently available. Accumulating evidence has suggested that N-methyl-D-aspartate receptors (NMDARs) and neuroinflammation are involved in the cognitive impairments in neurodegenerative diseases. In this study we aimed to investigate whether the noncompetitive NMDAR antagonist MK801 protects against 1-BP-induced cognitive dysfunction. Male Wistar rats were administered with MK801 (0.1 mg/kg) prior to 1-BP intoxication (800 mg/kg). Their cognitive performance was evaluated by the Morris water maze test. The brains of rats were dissected for biochemical, neuropathological, and immunological analyses. We found that the spatial learning and memory were significantly impaired in the 1-BP group, and this was associated with neurodegeneration in both the hippocampus (especially CA1 and CA3) and cortex. Besides, the protein levels of phosphorylated NMDARs were increased after 1-BP exposure. MK801 ameliorated the 1-BP-induced cognitive impairments and degeneration of neurons in the hippocampus and cortex. Mechanistically, MK801 abrogated the 1-BP-induced disruption of excitatory and inhibitory amino-acid balance and NMDAR abnormalities. Subsequently, MK801 inhibited the microglial activation and release of pro-inflammatory cytokines in 1-BP-treated rats. Our findings, for the first time, revealed that MK801 protected against 1-BP-induced cognitive dysfunction by ameliorating NMDAR function and blocking microglial activation, which might provide a potential target for the treatment of 1-BP poisoning.
Animals
;
Brain
;
drug effects
;
metabolism
;
pathology
;
Cognitive Dysfunction
;
drug therapy
;
metabolism
;
pathology
;
Disease Models, Animal
;
Dizocilpine Maleate
;
pharmacology
;
Excitatory Amino Acid Antagonists
;
pharmacology
;
Hydrocarbons, Brominated
;
Inflammasomes
;
drug effects
;
metabolism
;
Male
;
Maze Learning
;
drug effects
;
physiology
;
Microglia
;
drug effects
;
metabolism
;
pathology
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
metabolism
;
Neurons
;
drug effects
;
metabolism
;
pathology
;
Nootropic Agents
;
pharmacology
;
Random Allocation
;
Rats, Wistar
;
Receptors, N-Methyl-D-Aspartate
;
antagonists & inhibitors
;
metabolism
;
Spatial Memory
;
drug effects
;
physiology
;
Specific Pathogen-Free Organisms
8.Palmitic acid induces hepatocellular oxidative stress and activation of inflammasomes.
Wen XU ; Yu-Bin GUO ; Xu LI ; Mei-Rong HE ; Si-de LIU
Journal of Southern Medical University 2016;36(5):655-659
OBJECTIVETo evaluate the effect of palmitic acid (PA) on oxidative stress and activation of inflammasomes in hepatocytes.
METHODSTo test the dose-dependent effect of PA on normal murine hepatocytes AML12, the cells were treated with 0, 0.15, 0.25 and 0.4 mmol/L of palmitic acid (PA). The cells were also divided into blank control group, 0.25 mmol/L PA group and 0.25 mmol/L PA+N-acetylcysteine (NAC) group to examine the effect of reactive oxygen species (ROS) on the activation of inflammasomes. After 24 h of treatment, lipid accumulation, total ROS, mitochondrial ROS, expression and localization of NOX4, and expressions of inflammasomes and IL-1β were detected in the hepatocytes.
RESULTSCompared with the control cells, PA treatment of the cells significantly increased cytoplasmic lipid accumulation, concentrations of total ROS (12 463.09±2.72 vs 6691.23±2.45, P=0.00) and mitochondrial ROS (64.98±0.94 vs 45.04±0.92, P=0.00), and the expressions of NOX4, NLRP3, ASC, caspase-1, and IL-1β (1603.52±1.32 vs 2629.33±2.57, P=0.00). The mitochondria and NOX4 were found to be co-localized in the cytoplasm. NAC obviously reduced cellular ROS level stimulated by PA (7782.15±2.87 vs 5445.6±1.17, P=0.00) and suppressed the expressions of NLRP3, ASC and caspase-1.
CONCLUSIONPA treatment can stimulate lipid accumulation in hepatocytes and induce oxidative stress through NOX4 and mitochondria pathway to activate inflammasomes and stimulate the secretion of IL-1β.
Acetylcysteine ; pharmacology ; Animals ; Carrier Proteins ; metabolism ; Caspase 1 ; metabolism ; Cells, Cultured ; Hepatocytes ; drug effects ; metabolism ; Inflammasomes ; drug effects ; metabolism ; Interleukin-1beta ; metabolism ; Mice ; Mitochondria ; drug effects ; NADPH Oxidase 4 ; NADPH Oxidases ; metabolism ; NLR Family, Pyrin Domain-Containing 3 Protein ; Oxidative Stress ; Palmitic Acid ; pharmacology ; Reactive Oxygen Species ; metabolism
9.Preventive and therapeutic effect of bioactive component of licorice on antidepressant-induced liver injury.
Wen-Qing MU ; Guang XU ; Jia ZHAO ; Yuan-Yuan CHEN ; Zhao-Fang BAI ; Xiao-He XIAO
China Journal of Chinese Materia Medica 2022;47(22):6146-6154
Since exploding rates of modern mental diseases, application of antidepressants has increased. Worryingly, the antidepressant-induced liver injury has gradually become a serious health burden. Furthermore, since most of the knowledge about antidepressant hepatotoxicity are from pharmacovigilance and clinical case reports and lack of observational studies, the underlying mechanisms are poorly understood and there is a lack of efficient treatment strategies. In this study, antidepressant paroxetine directly triggered inflammasome activation evidenced by caspase-1 activation and downstream effector cytokines interleukin(IL)-1β secretion. The pretreatment of echinatin, a bioactive component of licorice, completely blocked the activation. This study also found that echinatin effectively inhibited the production of inflammasome-independent tumor necrosis factor α(TNF)-α induced by paroxetine. Mechanistically, the accumulation of mitochondrial reactive oxygen species(mtROS) was a key upstream event of paroxetine-induced inflammasome activation, which was dramatically inhibited by echinatin. In the lipopolysaccharide(LPS)-mediated idiosyncratic drug-induced liver injury(IDILI) model, the combination of LPS and paroxetine triggered aberrant activation of the inflammasome to induce idiosyncratic hepatotoxicity, which was reversed by echinatin pretreatment. Notably, this study also found that various bioactive components of licorice had an inhibitory effect on paroxetine-triggered inflammasome activation. Meanwhile, multiple antidepressant-induced aberrant activation of the inflammasome could be completely blocked by echinatin pretreatment. In conclusion, this study provides a novel insight for mechanism of antidepressant-induced liver injury and a new strategy for the treatment of antidepressant-induced hepatotoxicity.
Animals
;
Humans
;
Mice
;
Antidepressive Agents/adverse effects*
;
Chemical and Drug Induced Liver Injury, Chronic/prevention & control*
;
Glycyrrhiza/chemistry*
;
Inflammasomes/drug effects*
;
Interleukin-1beta/metabolism*
;
Lipopolysaccharides/toxicity*
;
Mice, Inbred C57BL
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Paroxetine/adverse effects*
;
Tumor Necrosis Factor-alpha
;
Chalcones/therapeutic use*
10.Norisoboldine, a natural aryl hydrocarbon receptor agonist, alleviates TNBS-induced colitis in mice, by inhibiting the activation of NLRP3 inflammasome.
Qi LV ; Kai WANG ; Si-Miao QIAO ; Yue DAI ; Zhi-Feng WEI
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):161-174
Although the etiology of inflammatory bowel disease is still uncertain, increasing evidence indicates that the excessive activation of NLRP3 inflammasome plays a major role. Norisoboldine (NOR), an alkaloid isolated from Radix Linderae, has previously been demonstrated to inhibit inflammation and IL-1β production. The present study was to examine the effect of NOR on colitis and the underlying mechanism related to NLRP3 inflammasome activation. Our results showed that NOR alleviated colitis symptom in mice induced by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Moreover, it significantly reduced expressions of cleaved IL-1β, NLRP3 and cleaved Caspase-1 but not ASC in colons of mice. In THP-1 cells, NOR suppressed the expressions of NLRP3, cleaved Caspase-1 and cleaved IL-1β but not ASC induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Furthermore, NOR could activate aryl hydrocarbon receptor (AhR) in THP-1 cells, inducing CYP1A1 mRNA expression, and promoting dissociation of AhR/HSP90 complexes, association of AhR and ARNT, AhR nuclear translocation, XRE reporter activity and binding activity of AhR/ARNT/XRE. Both siAhR and α-naphthoflavone (α-NF) markedly diminished the inhibition of NOR on NLRP3 inflammasome activation. In addition, NOR elevated Nrf2 level and reduced ROS level in LPS- and ATP-stimulated THP-1 cells, which was reversed by either siAhR or α-NF treatment. Finally, correlations between activation of AhR and attenuation of colitis, inhibition of NLRP3 inflammasome activation and up-regulation of Nrf2 level in colons were validated in mice with TNBS-induced colitis. Taken together, NOR ameliorated TNBS-induced colitis in mice through inhibiting NLRP3 inflammasome activation via regulating AhR/Nrf2/ROS signaling pathway.
Alkaloids
;
administration & dosage
;
Animals
;
Colitis
;
chemically induced
;
drug therapy
;
genetics
;
immunology
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Inflammasomes
;
drug effects
;
immunology
;
Interleukin-1beta
;
genetics
;
immunology
;
Lindera
;
chemistry
;
Male
;
Mice
;
Mice, Inbred BALB C
;
NF-kappa B
;
genetics
;
immunology
;
Receptors, Aryl Hydrocarbon
;
agonists
;
genetics
;
metabolism
;
Trinitrobenzenesulfonic Acid
;
adverse effects