1.The potential inhibitory impact of curcumin, epigallocatechin gallate and their combinations on infectious bronchitis virus in vivo
Fadwa Amin ; Sabry Tamam ; Abdou Allayeh ; Mai Raslan
Malaysian Journal of Microbiology 2022;18(1):47-57
Aims:
Infectious bronchitis virus (IBV) is a highly contagious, acute viral respiratory disease that mostly affects chickens. The poultry sector has suffered enormous losses as a result of IBV. Currently, live attenuated vaccines are routinely used to prevent and control IBV. However, due to the enormous genetic variety, vaccinations are becoming ineffective, with low cross-protection effects among vaccine serotypes. The present study aimed at investigating the possible antiviral effects of curcumin, epigallocatechin gallate (EGCG) and their mixtures against IBV in vivo.
Methodology and results:
Curcumin, EGCG and their combinations were administered to infected and uninfected chicken groups and viral load titers were determined by real-time PCR. The clinical symptoms of both the negative and positive control groups were also compared. Finally, the trachea tissues of each group were examined histopathologically. According to our findings, the viral titer and the clinical signs dropped significantly during the pretreatment infection procedure. Curcumin, EGCG and their combinations also show significant antiviral activities.
Conclusion, significance and impact of study
This study clearly shown that natural compounds and their combinations, such as curcumin or/and ECGC can reduce viral pathogenicity in vivo, suggesting that they might have therapeutic implications in the poultry sector.
Infectious bronchitis virus--physiology
;
Curcumin
;
Catechin
2.Correlations in the results of virus neutralization test, hemagglutination inhibition test, and enzyme-linked immunosorbent assay to determine infectious bronchitis virus vaccine potency.
Mi Ja PARK ; Seong Joon JOH ; Kang Seuk CHOI ; Aeran KIM ; Min Goo SEO ; Jae Young SONG ; Seon Jong YUN
Korean Journal of Veterinary Research 2016;56(3):189-192
The virus neutralization (VN) test was used to determine potency of the infectious bronchitis (IB) vaccine. The results of VN, hemagglutination inhibition (HI), and enzyme-linked immunosorbent assay (ELISA) were compared with those of the IBV M41. The r² values between VN and HI titers and the ELISA antibody titer were 0.8782 and 0.0336, respectively, indicating a high correlation between VN and HI, but not VN and ELISA. The Cohen's kappa coefficient between the VN titer of 2 log₁₀ and HI titer of 5 log₂ was 0.909. Our results showed that VN could be replaced with HI for testing the potency of IBV M41.
Bronchitis
;
Enzyme-Linked Immunosorbent Assay*
;
Hemagglutination Inhibition Tests*
;
Hemagglutination*
;
Infectious bronchitis virus*
;
Neutralization Tests*
;
Vaccine Potency*
3.Genomic characteristics of natural recombinant infectious bronchitis viruses isolated in Korea
Hyun Woo MOON ; Haan Woo SUNG ; Hyuk Moo KWON
Korean Journal of Veterinary Research 2019;59(3):123-132
Two infectious bronchitis virus (IBV) K046-12 and K047-12 strains were isolated and the nearly complete genomes of them were sequenced. Sequence comparisons showed that the K046-12 genome was most similar to Korean IBV strains, and the K047-12 genome was most similar to QX-like IBV strains. Phylogenetic analysis showed that nearly all K046-12 and most K046-12 genes were placed in the same cluster as Korean IBV isolates, but the S1 region was placed in the same cluster as Mass-type IBVs. For K047-12, nearly all K047-12 and most K047-12 genes were located in the same cluster as QX-like IBVs, but the M region was located in the same cluster as Korean IBV isolates with K047-12. Recombination analysis confirmed that K046-12 is a recombinant strain with the primary parental sequence derived from Korean IBVs and minor parental sequence derived from Mass-type IBV, and K047-12 is a recombinant strain with the major parental sequence derived from QX-IBV and minor parental sequence derived from Korean IBVs. This study showed that new IBV recombinants are constantly generated among various IBVs, including those used for vaccination. Therefore, genetic analysis of new virus isolates should be performed for effective infectious bronchitis control and appropriate vaccine development.
Bronchitis
;
Genome
;
Humans
;
Infectious bronchitis virus
;
Korea
;
Parents
;
Recombination, Genetic
;
Vaccination
4.Development of an attenuated vaccine strain from a korean respiratory type infectious bronchitis virus.
Kang Seuk CHOI ; Woo Jin JEON ; Eun Kyoung LEE ; Soo Jeong KYE ; Mi Ja PARK ; Jun Hun KWON
Korean Journal of Veterinary Research 2011;51(3):193-201
An attenuated vaccine strain AVR1/08 of Korean respiratory type of infectious bronchitis virus (IBV) was developed by 89th passages of IBV D85/06 strain in chicken eggs. The AVR1/08 strain had higher virus titer at least 20 times (10(1.3)) than the parent virus D85/06 by egg inoculation method. The AVR1/08 strain had a single point mutation (S to Y) at position 56 of spike protein of IBV compared to parent virus IBV D85/06 strain. The mutation was observed consistently at viruses after 47th passage in chicken eggs. The AVR1/08 strain showed no virulence even after 6 passages in chickens and all chickens inoculated induced anti-IBV antibody 14 days after vaccination. The AVR1/08 strain had broad protective efficacy against QX type Korean nephropathogenic virus (Q43/06 strain), KM91 type Korean nephropathogenic virus (KM91 strain) and Korean respiratory virus (D85/06 strain). In contrast, Massachusetts (Mass) type attenuated vaccine strain H120 showed protection of 37.5 to 50% against these three viruses. Our results indicate that the AVR1/08 strain has potential as an attenuated vaccine effective in controlling IBVs circulating in Korea.
Chickens
;
Eggs
;
Humans
;
Infectious bronchitis virus
;
Korea
;
Massachusetts
;
Ovum
;
Parents
;
Point Mutation
;
Sprains and Strains
;
Vaccination
;
Viral Load
;
Viruses
5.Elevated level of renal xanthine oxidase mRNA transcription after nephropathogenic infectious bronchitis virus infection in growing layers.
Huayuan LIN ; Qiqi HUANG ; Xiaoquan GUO ; Ping LIU ; Weilian LIU ; Yuelong ZOU ; Shuliang ZHU ; Guangfu DENG ; Jun KUANG ; Caiying ZHANG ; Huabin CAO ; Guoliang HU
Journal of Veterinary Science 2015;16(4):423-429
To assess relationships between xanthine oxidase (XOD) and nephropathogenic infectious bronchitis virus (NIBV) infection, 240 growing layers (35 days old) were randomly divided into two groups (infected and control) of 120 chickens each. Each chicken in the control and infected group was intranasally inoculated with 0.2 mL sterile physiological saline and virus, respectively, after which serum antioxidant parameters and renal XOD mRNA expression in growing layers were evaluated at 8, 15 and 22 days post-inoculation (dpi). The results showed that serum glutathione peroxidase and superoxide dismutase activities in the infected group were significantly lower than in the control group at 8 and 15 dpi (p < 0.01), while serum malondialdehyde concentrations were significantly higher (p < 0.01). The serum uric acid was significantly higher than that of the control group at 15 dpi (p < 0.01). In addition, the kidney mRNA transcript level and serum activity of XOD in the infected group was significantly higher than that of the control group at 8, 15 and 22 dpi (p < 0.05). The results indicated that NIBV infection could cause the increases of renal XOD gene transcription and serum XOD activity, leading to hyperuricemia and reduction of antioxidants in the body.
Antioxidants
;
Chickens
;
Glutathione Peroxidase
;
Hyperuricemia
;
Infectious bronchitis virus*
;
Kidney
;
Malondialdehyde
;
RNA, Messenger*
;
Superoxide Dismutase
;
Uric Acid
;
Xanthine Oxidase*
;
Xanthine*
6.Pathogenicity and antigenicity of a new variant of Korean nephropathogenic infectious bronchitis virus.
Kang Seuk CHOI ; Eun Kyoung LEE ; Woo Jin JEON ; Mi Ja PARK ; Jin Won KIM ; Jun Hun KWON
Journal of Veterinary Science 2009;10(4):357-359
Despite the existence of an active vaccination program, recently emerged strains of nephropathogenic infectious bronchitis virus (IBV) in Korea have caused significant economic losses in the poultry industry. In this study, we assessed the pathogenic and antigenic characteristics of a K-IIb type field strain of IBV that emerged in Korea since 2003, such as Kr/Q43/06. Specific pathogen free 1-week-old chickens exhibited severe respiratory symptoms (dyspnea) and nephropathogenic lesions (swollen kidneys with nephritis and urate deposits) following challenge with the recent IBV field strain. The antigenic relatedness (R value), based on a calculated virus neutralization index, of the K-IIb type field strain and K-IIa type strain KM91 (isolated in 1991) was 30%, which indicated that the recent strain, Kr/Q43/06, is a new variant that is antigenically distinct from strain KM91. This report is the first to document the emergence of a new antigenic variant of nephropathogenic IBV in chicken from Korea.
Animals
;
Antigens, Viral
;
*Chickens
;
Coronavirus Infections/epidemiology/*veterinary/virology
;
Infectious bronchitis virus/classification/*pathogenicity
;
Korea
;
Nephritis/*veterinary/virology
;
Poultry Diseases/*virology
;
Specific Pathogen-Free Organisms
;
Virulence
7.Genetic variations of membrane gene of infectious bronchitis virus strains isolated in China between 1995 and 2004.
Lei NIE ; Qing-xia ZHANG ; Zong-xi HAN ; Yu-hao SHAO ; Jun-gong RONG ; Sheng-wang LIU ; Xian-gang KONG
Chinese Journal of Virology 2007;23(4):298-304
Membrane (M) protein genes of 20 infectious bronchitis virus (IBV) strains isolated in China between 1995 and 2004 were sequenced and analyzed. The M genes of twenty isolates were composed of 672 to 681 nucleotides, encoding polypeptides of 223 to 226 amino acid residues. Variations of the deduced amino acids of M gene mainly occurred at positions 2 to 17 and 221 to 233, comparing with that of the IBV strain LX4. There were deletions or insertions in the M gene of Chinese isolates at amino acid position 2 to 6, leading to the loss or gain of a glycosylation site. Phylogenetic tree based on amino acid sequences of M genes from 20 Chinese isolates and 34 reference strains showed that they were classified into five distinct clusters. Most of the Chinese IBV strains were included in clusters II and IV, forming distinct groups. The isolates in cluster II showed a close evolutionary relationship with Taiwan isolates. Furthermore, recombination especially the recombination between field isolates and vaccine strains had been observed while comparing the phylogeny of M genes with those of S1 and N genes.
Amino Acid Sequence
;
China
;
Genetic Variation
;
Infectious bronchitis virus
;
classification
;
genetics
;
isolation & purification
;
Molecular Sequence Data
;
Phylogeny
;
Sequence Homology, Amino Acid
;
Viral Matrix Proteins
;
genetics
8.Rescue of the recombinant infectious bronchitis virus with the ectodomain region of H120 spike glycoprotein.
Yan-quan WEI ; Hui-chen GUO ; Hai-ming WANG ; De-hui SUN ; Shi-chong HAN ; Shi-qi SUN
Chinese Journal of Virology 2014;30(6):668-674
To explore the expression potential of heterogeneous genes using the backbone of infectious bronchitis virus (IBV) Beaudette strain, the ectodomain region of the Spike gene (1,302 bp) of IBV H120 strain was amplified by RT-PCR and replaced into the corresponding location of the IBV Beaudette strain full-length cDNA. This recombinant was designated as BeauR-H120(S1). BeauR-H120(S1) was directly used as the DNA template for the transcription of viral genomic RNA in vitro. Then, the transcription product was transfected into Vero cells by electroporation. At 48 h post-transfection, the transfected Vero cells were harvested, and passaging continued. A syncytium was not observed until the recombinant virus had passed through four passages. The presence of rBeau-H120(S1) was verified by the detection of the replaced ectodomain region of the H120 Spike gene using RT-PCR. Western blot analysis of rBeau-H120 (S1)-infected Vero cell lysates demonstrated that the nucleocapsid (N) protein was expressed, which implied that rBeau-H120(S1) could propagate in Vero cells. The TCIDs0 and EIDs0 data demonstrated that the titer levels of rBeau-H120(S1) reached 10(590+/-0.22)TCID50/mL and 10(6.13+/-0.23)EID50/mL in Vero cells and 9-day-old SPF chicken embryos, respectively. Protection studies showed that the percentage of antibody-positive chickens, which were vaccinated with rBeau-H120(S1) at 7 days after hatching, rose to 90% at 21 days post-inoculation. Inoculation provided an 85% rate of immune protection against a challenge of the virulent IBV M41 strain (103EID50/chicken). This recombinant virus constructed using reverse genetic techniques could be further developed as a novel genetic engineering vaccine against infectious bronchitis.
Animals
;
Cercopithecus aethiops
;
Chick Embryo
;
Chickens
;
Coronavirus Infections
;
veterinary
;
virology
;
Infectious bronchitis virus
;
chemistry
;
genetics
;
growth & development
;
metabolism
;
Poultry Diseases
;
virology
;
Protein Structure, Tertiary
;
Spike Glycoprotein, Coronavirus
;
chemistry
;
genetics
;
metabolism
;
Transfection
;
Vero Cells
9.Dynamic distribution of the avian infectious bronchitis virus isolate strain Jin-13 in SPF chickens.
Huan LI ; Xia YANG ; Jun ZHAO ; Zhong-Tian WANG ; Lu CHEN ; Xin-Wei WANG ; Hong-Tao CHANG ; Yong-Tao LI ; Hong-Ying LIU ; Chuan-Qing WANG
Chinese Journal of Virology 2014;30(4):353-358
This study aimed to understand the dynamic distribution of infectious bronchitis virus (IBV) Jin-13 strain in SPF chickens. Ninety-day-old SPF chickens were inoculated with Jin-13, a virulent strain, and dissected at day 1, 4, 7, 10, 14, 21, 28 or 35 post-inoculation (dpi). Samples of heart, liver, spleen, lung, trachea, kidney and duodenum were collected and the N gene was detected by Sybr Green I real-time quantitative RT-PCR assays. The established method had a good linear correlation from 7.77 x 10(8) to 10(0) copies/microL. SPF chickens developed typical clinical signs of IBV at the 4th dpi, and the IBV viral concentration of tissues and organs gradually increased with a peak of up to 7.13 x 10(4) copies/microL. The viral concentration of most organs decreased by the 10th dpi, but those of the kidney, trachea and lung remained positive for IBV at 28 dpi and the heart was still positive for IBV at > 35 dpi. The results of this study, showed that the Jin-13 strain can cause prolonged virus excertion in chickens with severe renal damage.
Animals
;
Chickens
;
Coronavirus Infections
;
veterinary
;
virology
;
Infectious bronchitis virus
;
isolation & purification
;
pathogenicity
;
physiology
;
Lung
;
virology
;
Poultry Diseases
;
virology
;
Reverse Transcriptase Polymerase Chain Reaction
;
Specific Pathogen-Free Organisms
;
Trachea
;
virology
;
Virulence
10.Complete genomic analysis of a novel infectious bronchitis virus isolate.
Bei-Xia HU ; Shao-Hua YANG ; Xiu-Mei ZHANG ; Wei ZHANG ; San-Jie CAO ; Chuan-Tian XU ; Qing-Hua HUANG ; Lin ZHANG ; Yan-Yan HUANG ; Xin-Tian WEN
Chinese Journal of Virology 2014;30(4):339-345
The genome of CK/CH/SD09/005, an isolate of infectious bronchitis virus (IBV), was characterized to enable the further understanding of the epidemiology and evolution of IBV in China. Twenty-five pairs of primers were designed to amplify the full-length genome of CK/CH/SD09/005. The nucleotide sequence of CK/CH/SD09/005 was compared with reference IBV strains retrieved from GenBank. The phylogenic relationship between CK/CH/SD09/005 and the reference strains was analyzed based on S1 gene sequences. The complete genome of CK/CH/SD09/005 consisted of 27691 nucleotides (nt), excluding the 5' cap and 3' poly A tail. The whole-genome of CK/CH/SD09/005 shared 97 - 99% nucleotide sequence homology with the GX-NN09032 strain, which was the only complete genome that was closely related to CK/CH/SD09/005. When compared with all reference strains except GX-NN09032, CK/CH/SD09/005 showed the highest similarity to ck/CH/LDL/091022 and SDIB821/2012 (QX-like) in the replicase gene (Gene 1) and 3'UTR, with a sequence identity rate of 97% and 98%, respectively. However, CK/CH/SD09/005 exhibited lower levels of similarity with ck/CH/LDL/091022 and SDIB821/2012 in S-3a-3b-3c/ E-M-5a-5b-N with a sequence identity of 72% - 90%. CK/CH/SD09/005 showed the highest level of nucleotide identity with Korean strain 1011, and Chinese strains CK/CH/LXJ/02I, DK/CH/HN/ZZ2004 and YX10, in ORF 3c/E (97%), 5a (96%), 5b (99%) and N (96%), respectively. ORFs 3a, 3b and M of CK/CH/SD09/005 exhibited no more than 90% homology with the reference strains, excluding GX-NN09032. The phylogenic analysis based on the S1 gene revealed that CK/CH/SD09/005 and 39 published strains were classified into seven clades (genotypes). CK/CH/SD09/005 was distributed in clade IV with several isolates collected between 2007 and 2012. CK/CH/SD09/005 showed 66% - 69% and 72% - 81% nucleotide identities with the IBV strains of other six clades in the S1 and S2 subunits, respectively. More over, multiple substitutions were found throughout the entire S gene of CK/CH/SD09/005, while insertions and deletions were located within the S1 gene. These results indicated that CK/CH/SD09/005 is a novel variant that may be derived from the QX-like strains that are prevalent in China. Multiple genetic mechanisms, including recombinations, mutations, insertions and deletions, are likely to have contributed to the emergence of this IBV strain.
Animals
;
Chickens
;
China
;
Coronavirus Infections
;
veterinary
;
virology
;
Genome, Viral
;
Genomics
;
Infectious bronchitis virus
;
classification
;
genetics
;
isolation & purification
;
Molecular Sequence Data
;
Phylogeny
;
Poultry Diseases
;
virology
;
Sequence Homology, Amino Acid
;
Viral Proteins
;
chemistry
;
genetics