1.Recent development of Pichia pastoris system: current status and future perspective.
Chinese Journal of Biotechnology 2015;31(6):929-938
With more than 20 years of development, Pichia pastoris system has been extensively used both on a lab and industrial scale. This review outlines the progress made on P. pastoris from aspects of protein expression, molecular engineering tools and methods, and biochemical production. This review also provides perspectives on the current challenges and future directions of this important system.
Bioengineering
;
Industrial Microbiology
;
Pichia
2.Preface for special issue on industrial biology (2019).
Chinese Journal of Biotechnology 2019;35(10):1801-1805
Industrial biotechnology promises to make a significant contribution in enabling the sustainable development, and need the solid support from its basic discipline. As the basis of industrial biotechnology, industrial biology is to study the basic laws and mechanisms of biological behavior in industrial environment and to solve the key scientific problems for understanding, designing and constructing the organisms adapted to the application of industrial environment. In order to comprehend the status of industrial biology, we published this special issue to review the progress and trends of industrial biology from the three aspects of industrial protein science, cell science and fermentation science, respectively, for laying the foundation for the development of industrial biotechnology.
Biotechnology
;
Fermentation
;
Industrial Microbiology
3.Progress in intelligent control of industrial bioprocess.
Xiwei TIAN ; Guan WANG ; Siliang ZHANG ; Yingping ZHUANG
Chinese Journal of Biotechnology 2019;35(10):2014-2024
Industrial bioprocess is a complex systematic process and bio-manufacturing can be realized on the basis of understanding the metabolism process of living cells. In this article, the multi-scale optimization principle and practice of industrial fermentation process are reviewed, including multi-scale optimizing theory and equipment, on-line sensing technology for cellular macroscopic metabolism, and correlated analysis of physiological parameters. Furthermore, intelligent control of industrial bioprocess is further addressed, in terms of new sensing technology for intracellular physiological metabolism, big database establishment and data depth calculation, intelligent decision.
Bioreactors
;
Biotechnology
;
Fermentation
;
Industrial Microbiology
4.Progress in microbial synthesis and application of polymalic acid.
Yuanyuan WANG ; Yufen QUAN ; Cunjiang SONG
Chinese Journal of Biotechnology 2014;30(9):1331-1340
Polymalic acid, known as a bioactive material, is completely biodegradable, and has far reaching application potential in medical field. Combined with our own findings, we summarized advances in polymalic acid metabolism, microbial fermentation synthesis, and application research in the medical field. Finally, prospect for further research was addressed.
Fermentation
;
Industrial Microbiology
;
Malates
;
chemistry
;
Polymers
;
chemistry
5.Progress in inverse metabolic engineering.
Guiying LI ; Xinbo ZHANG ; Zhiwen WANG ; Ying SHI ; Tao CHEN ; Xueming ZHAO
Chinese Journal of Biotechnology 2014;30(8):1151-1163
In the last few years, high-throughput (or 'next-generation') sequencing technologies have delivered a step change in our ability to sequence genomes, whether human or bacterial. Further comparative genome analysis enables us to reveal detailed knowledge of genetics or physiology of industrial important strains obtained in laboratory, to analyze genotype-phenotype correlations of mutants with improved performance. Based on identified key mutations or mutation combinations, Inverse Metabolic Engineering (IME) can be performed by using accurate genetic modification system. Recently, IME has been successfully used for strain improvement and has become a research hotspot, including improving substrate utilization, engineering the robustness of industrial microbes and enhancing production of bio-based products. Here, we describe recent advances in research methods of IME, with an emphasis on characterization of genotype-phenotype and the latest advances and application of IME. Possible directions and challenges for further development of IME are also discussed.
Industrial Microbiology
;
trends
;
Metabolic Engineering
;
trends
;
Mutation
6.Simulation of industrial fermentation: current status and future perspectives.
Demao LI ; Wuxi CHEN ; Wei GUO ; Chaofeng LI
Chinese Journal of Biotechnology 2019;35(10):1974-1985
Industrial fermentation is the basic operation unit of industrial biotechnology in large-scale production. Mathematical simulation of microbial cells and their reactors will help deepen the understanding of microorganisms and fermentation processes, and will also provide solutions for the construction of new synthetic organisms. In this paper, the characteristics of industrial fermentation system, the development of mathematical simulation, the classification, characteristics and functions of mathematical models are described in depth, and the development trend of whole fermentation system simulation is prospected.
Biotechnology
;
Fermentation
;
Industrial Microbiology
;
Models, Biological
7.Advance in dihydroxyacetone production by microbial fermentation.
Xiaojing XU ; Xun CHEN ; Mingfen JIN ; Xiaowei WU ; Xianghe WANG
Chinese Journal of Biotechnology 2009;25(6):903-908
We reviewed the fermentation for dihydroxyacetone production. Microbial fermentation is better for dihydroxyacetone production as compared to chemical methods. Gluconobacter oxydans was recognized as the most important strain for industrial production of dihydroxyacetone. The dihydroxyacetone yield is associated with many factors such as substrate, product, oxygen and biomass concentration. Repeated fed-batch fermentation and immobilization fermentation were recognized as the most potential process in various fermentation mode. Construction of recombinant microorganism and optimization of process are future directions of dihydroxyacetone production.
Dihydroxyacetone
;
biosynthesis
;
Fermentation
;
Gluconobacter oxydans
;
metabolism
;
Industrial Microbiology
8.Optimization of xylose fermentation for ethanol production by Candida shehatae HDYXHT-01.
Jingping GE ; Guoming LIU ; Xiaofeng YANG ; Hongbing SUN ; Hongzhi LING ; Wenxiang PING
Chinese Journal of Biotechnology 2011;27(3):404-411
Plackett-Burman (PB) design and central composite design (CCD) were applied to optimize of xylose fermentation for ethanol production by Candida shehatae HDYXHT-01. The PB results showed that (NH4)2SO4, KH2PO4, yeast extract and inoculum volume were the main affecting factors. With ethanol productivity as the target response, the optimal fermentation was determined by CCD and response surface analysis (RSM). The optimal fermentation conditions were (NH4)2SO4 1.73 g/L, KH2PO4 3.56 g/L, yeast extract 2.62 g/L and inoculum volume 5.66%. Other fermentation conditions were xylose 80 g/L, MgSO47H20 0.1 g/L, pH 5.0 and 250 mL flask containing 100 mL medium and cultivated at 30 degrees C for 48 h and the agitation speed was 140 r/min. Under this fermentation conditions, ethanol productivity was 26.18 g/L, which was 1.15 times of the initial.
Candida
;
metabolism
;
Ethanol
;
metabolism
;
Fermentation
;
Industrial Microbiology
;
Xylose
;
metabolism
9.16β-hydroxylation of 4-androstene-3,17-dione by Aspergillus niger.
Zhijiang GE ; Shuhong MAO ; Yanqing LI ; Xiaoguang LIU ; Fuping LU
Chinese Journal of Biotechnology 2014;30(9):1481-1485
In order to discover the steroid biotransformation ability of filamentous fungus Aspergillus niger TCCC41650, we studied the fermentation of 4-androstene-3,17-dione with A. niger TCCC41650. The transformation product was purified, crystallized and determined as 16β-hydroxy-androst-4-ene-3,17-dione by X-ray single crystal diffraction method. The best fermentation condition was found to be pH 6.0, ethanol amount 2% with a substrate concentration of 1 per thousand, the transformation rate is 85.81% after 72 h. Based on the best of our knowledge, 16β-hydroxylation rarely occurs in microbial transformations of steroid. This study laid the foundation for the research of 16β-hydroxylation steroids
Androstenedione
;
metabolism
;
Aspergillus niger
;
metabolism
;
Biotransformation
;
Fermentation
;
Hydroxylation
;
Industrial Microbiology
10.Synthesis of diisooctyl adipate catalyzed by lipase-displaying Pichia pastoris whole-cell biocatalysts.
Na ZHANG ; Zi JIN ; Ying LIN ; Suiping ZHENG ; Shuangyan HAN
Chinese Journal of Biotechnology 2013;29(7):1027-1031
An enzyme-displaying yeast as a whole-cell biocatalyst is an alternative to immobilized enzyme, due to its low-cost preparation and simple recycle course. Here, lipase-displaying Pichia pastoris whole-cell was used as a biocatalyst to synthesize diisooctyl adipate in the non-aqueous system. The maximum productivity of diisooctyl adipate was obtained as 85.0% in a 10 mL reaction system. The yield could be reached as high as 97.8% when the reaction system was scaled up to 200 mL. The purity obtained is 98.2% after vacuum distillation. Thus, the lipase-displaying P. pastoris whole-cell biocatalyst was promising in commercial application for diisooctyl adipate synthesis in non-aqueous phase.
Adipates
;
metabolism
;
Industrial Microbiology
;
Lipase
;
metabolism
;
Pichia
;
metabolism