1.Recent development of Pichia pastoris system: current status and future perspective.
Chinese Journal of Biotechnology 2015;31(6):929-938
With more than 20 years of development, Pichia pastoris system has been extensively used both on a lab and industrial scale. This review outlines the progress made on P. pastoris from aspects of protein expression, molecular engineering tools and methods, and biochemical production. This review also provides perspectives on the current challenges and future directions of this important system.
Bioengineering
;
Industrial Microbiology
;
Pichia
2.Preface for special issue on industrial biology (2019).
Chinese Journal of Biotechnology 2019;35(10):1801-1805
Industrial biotechnology promises to make a significant contribution in enabling the sustainable development, and need the solid support from its basic discipline. As the basis of industrial biotechnology, industrial biology is to study the basic laws and mechanisms of biological behavior in industrial environment and to solve the key scientific problems for understanding, designing and constructing the organisms adapted to the application of industrial environment. In order to comprehend the status of industrial biology, we published this special issue to review the progress and trends of industrial biology from the three aspects of industrial protein science, cell science and fermentation science, respectively, for laying the foundation for the development of industrial biotechnology.
Biotechnology
;
Fermentation
;
Industrial Microbiology
3.Progress in intelligent control of industrial bioprocess.
Xiwei TIAN ; Guan WANG ; Siliang ZHANG ; Yingping ZHUANG
Chinese Journal of Biotechnology 2019;35(10):2014-2024
Industrial bioprocess is a complex systematic process and bio-manufacturing can be realized on the basis of understanding the metabolism process of living cells. In this article, the multi-scale optimization principle and practice of industrial fermentation process are reviewed, including multi-scale optimizing theory and equipment, on-line sensing technology for cellular macroscopic metabolism, and correlated analysis of physiological parameters. Furthermore, intelligent control of industrial bioprocess is further addressed, in terms of new sensing technology for intracellular physiological metabolism, big database establishment and data depth calculation, intelligent decision.
Bioreactors
;
Biotechnology
;
Fermentation
;
Industrial Microbiology
4.Progress in microbial synthesis and application of polymalic acid.
Yuanyuan WANG ; Yufen QUAN ; Cunjiang SONG
Chinese Journal of Biotechnology 2014;30(9):1331-1340
Polymalic acid, known as a bioactive material, is completely biodegradable, and has far reaching application potential in medical field. Combined with our own findings, we summarized advances in polymalic acid metabolism, microbial fermentation synthesis, and application research in the medical field. Finally, prospect for further research was addressed.
Fermentation
;
Industrial Microbiology
;
Malates
;
chemistry
;
Polymers
;
chemistry
5.Progress in inverse metabolic engineering.
Guiying LI ; Xinbo ZHANG ; Zhiwen WANG ; Ying SHI ; Tao CHEN ; Xueming ZHAO
Chinese Journal of Biotechnology 2014;30(8):1151-1163
In the last few years, high-throughput (or 'next-generation') sequencing technologies have delivered a step change in our ability to sequence genomes, whether human or bacterial. Further comparative genome analysis enables us to reveal detailed knowledge of genetics or physiology of industrial important strains obtained in laboratory, to analyze genotype-phenotype correlations of mutants with improved performance. Based on identified key mutations or mutation combinations, Inverse Metabolic Engineering (IME) can be performed by using accurate genetic modification system. Recently, IME has been successfully used for strain improvement and has become a research hotspot, including improving substrate utilization, engineering the robustness of industrial microbes and enhancing production of bio-based products. Here, we describe recent advances in research methods of IME, with an emphasis on characterization of genotype-phenotype and the latest advances and application of IME. Possible directions and challenges for further development of IME are also discussed.
Industrial Microbiology
;
trends
;
Metabolic Engineering
;
trends
;
Mutation
6.Simulation of industrial fermentation: current status and future perspectives.
Demao LI ; Wuxi CHEN ; Wei GUO ; Chaofeng LI
Chinese Journal of Biotechnology 2019;35(10):1974-1985
Industrial fermentation is the basic operation unit of industrial biotechnology in large-scale production. Mathematical simulation of microbial cells and their reactors will help deepen the understanding of microorganisms and fermentation processes, and will also provide solutions for the construction of new synthetic organisms. In this paper, the characteristics of industrial fermentation system, the development of mathematical simulation, the classification, characteristics and functions of mathematical models are described in depth, and the development trend of whole fermentation system simulation is prospected.
Biotechnology
;
Fermentation
;
Industrial Microbiology
;
Models, Biological
7.16β-hydroxylation of 4-androstene-3,17-dione by Aspergillus niger.
Zhijiang GE ; Shuhong MAO ; Yanqing LI ; Xiaoguang LIU ; Fuping LU
Chinese Journal of Biotechnology 2014;30(9):1481-1485
In order to discover the steroid biotransformation ability of filamentous fungus Aspergillus niger TCCC41650, we studied the fermentation of 4-androstene-3,17-dione with A. niger TCCC41650. The transformation product was purified, crystallized and determined as 16β-hydroxy-androst-4-ene-3,17-dione by X-ray single crystal diffraction method. The best fermentation condition was found to be pH 6.0, ethanol amount 2% with a substrate concentration of 1 per thousand, the transformation rate is 85.81% after 72 h. Based on the best of our knowledge, 16β-hydroxylation rarely occurs in microbial transformations of steroid. This study laid the foundation for the research of 16β-hydroxylation steroids
Androstenedione
;
metabolism
;
Aspergillus niger
;
metabolism
;
Biotransformation
;
Fermentation
;
Hydroxylation
;
Industrial Microbiology
8.Optimization of xylose fermentation for ethanol production by Candida shehatae HDYXHT-01.
Jingping GE ; Guoming LIU ; Xiaofeng YANG ; Hongbing SUN ; Hongzhi LING ; Wenxiang PING
Chinese Journal of Biotechnology 2011;27(3):404-411
Plackett-Burman (PB) design and central composite design (CCD) were applied to optimize of xylose fermentation for ethanol production by Candida shehatae HDYXHT-01. The PB results showed that (NH4)2SO4, KH2PO4, yeast extract and inoculum volume were the main affecting factors. With ethanol productivity as the target response, the optimal fermentation was determined by CCD and response surface analysis (RSM). The optimal fermentation conditions were (NH4)2SO4 1.73 g/L, KH2PO4 3.56 g/L, yeast extract 2.62 g/L and inoculum volume 5.66%. Other fermentation conditions were xylose 80 g/L, MgSO47H20 0.1 g/L, pH 5.0 and 250 mL flask containing 100 mL medium and cultivated at 30 degrees C for 48 h and the agitation speed was 140 r/min. Under this fermentation conditions, ethanol productivity was 26.18 g/L, which was 1.15 times of the initial.
Candida
;
metabolism
;
Ethanol
;
metabolism
;
Fermentation
;
Industrial Microbiology
;
Xylose
;
metabolism
9.Application of bioinformatics in researches of industrial biocatalysis.
Hui-Min YU ; Hui LUO ; Yue SHI ; Xu-Dong SUN ; Zhong-Yao SHEN
Chinese Journal of Biotechnology 2004;20(3):325-331
Industrial biocatalysis is currently attracting much attention to rebuild or substitute traditional producing process of chemicals and drugs. One of key focuses in industrial biocatalysis is biocatalyst, which is usually one kind of microbial enzyme. In the recent, new technologies of bioinformatics have played and will continue to play more and more significant roles in researches of industrial biocatalysis in response to the waves of genomic revolution. One of the key applications of bioinformatics in biocatalysis is the discovery and identification of the new biocatalyst through advanced DNA and protein sequence search, comparison and analyses in Internet database using different algorithm and software. The unknown genes of microbial enzymes can also be simply harvested by primer design on the basis of bioinformatics analyses. The other key applications of bioinformatics in biocatalysis are the modification and improvement of existing industrial biocatalyst. In this aspect, bioinformatics is of great importance in both rational design and directed evolution of microbial enzymes. Based on the successful prediction of tertiary structures of enzymes using the tool of bioinformatics, the undermentioned experiments, i.e. site-directed mutagenesis, fusion protein construction, DNA family shuffling and saturation mutagenesis, etc, are usually of very high efficiency. On all accounts, bioinformatics will be an essential tool for either biologist or biological engineer in the future researches of industrial biocatalysis, due to its significant function in guiding and quickening the step of discovery and/or improvement of novel biocatalysts.
Biocatalysis
;
Computational Biology
;
trends
;
Enzymes
;
chemistry
;
metabolism
;
Industrial Microbiology
10.Pathway modification of industrial microorganisms to improve acid-stress tolerance.
Xiaoming HAO ; Bo CHEN ; Tai AN
Chinese Journal of Biotechnology 2015;31(8):1151-1161
Different types of acids from fermentation environment or industrial microorganisms exist during fermentation process. Acids may inhibit growth and metabolism of industrial strains, namely acid stress. The tolerance mechanisms of acid stress include regulation of intracellular proton concentration, protection and restoration of intracellular macromolecules, changes in cell membrane composition and acid stress response at whole cell level. Screening and modification methods have been applied to improve acid-stress tolerance of industrial strains for decades. In this review, we provide insights into acid-stress tolerance of industrial microorganisms and address the modification of microbial pathways to improve acid-stress tolerance.
Acids
;
chemistry
;
Fermentation
;
Hydrogen-Ion Concentration
;
Industrial Microbiology
;
Metabolic Engineering