1.Research progress in energy metabolism design of cell factories.
Yiqun YANG ; Qingqing LIU ; Shuo TIAN ; Tao YU
Chinese Journal of Biotechnology 2025;41(3):1098-1111
Energy metabolism regulation plays a pivotal role in metabolic engineering. It mainly achieves the balance of material and energy metabolism or maximizes the utilization of materials and energy by regulating the supply intensity and mode of ATP and reducing electron carriers in cells. On the one hand, the production efficiency can be increased by changing the distribution of material metabolic flow. On the other hand, the thermodynamic parameters of enzyme-catalyzed reactions can be altered to affect the reaction balance, and thus the production costs are reduced. Therefore, energy metabolism regulation is expected to become a favorable tool for the modification of microbial cell factories, thereby increasing the production of target metabolites and reducing production costs. This article introduces the commonly used energy metabolism regulation methods and their effects on cell factories, aiming to provide a reference for the efficient construction of microbial cell factories.
Energy Metabolism/physiology*
;
Metabolic Engineering/methods*
;
Adenosine Triphosphate/metabolism*
;
Industrial Microbiology/methods*
2.Screening of soil biocontrol bacteria and evaluation of their control effects on Fusarium head blight of wheat.
Dongfang WANG ; Xinxin ZHAI ; Chunlin YANG ; Huilan ZHANG ; Jie WU ; Zerong SONG ; Pan ZHAO ; Yu CHI
Chinese Journal of Biotechnology 2025;41(10):3764-3773
Fusarium head blight (FHB), caused by Fusarium graminearum, not only leads to severe yield losses but also poses a threat to food safety due to the mycotoxins produced by the pathogen. Since this disease is preventable but not curable, the current control mainly relies on chemical fungicides, the long-term use of which may lead to pathogen resistance and environmental pollution. To develop green control methods, we screened 13 biocontrol strains from the rhizosphere soil of wheat, among which strain No. 12 (identified as Pythium aphanidermatum) showed significant antifungal effects. In the plate confrontation test, this strain reduced the colony diameter of the pathogen by 69.2% (1.47 mm vs. 4.78 mm in the control group), with an inhibition rate of 77% (P < 0.01). Microscopic observation revealed obvious deformations in the pathogen hyphae, suggesting a lysing effect. The coleoptile experiment further confirmed that the pre-treatment with this strain reduced the incidence rate to 0. These findings provide new candidate strains for the biocontrol of FHB and offer a scientific basis for reducing the use of chemical fungicides and promoting sustainable agricultural development.
Triticum/growth & development*
;
Fusarium/growth & development*
;
Plant Diseases/prevention & control*
;
Soil Microbiology
;
Pest Control, Biological/methods*
;
Pythium/physiology*
;
Biological Control Agents
;
Rhizosphere
;
Fungicides, Industrial
3.Adaptive evolution of microorganisms based on industrial environmental perturbations.
Xiaoling TANG ; Jingxiang CHEN ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2023;39(3):993-1008
The development of synthetic biology has greatly promoted the construction of microbial cell factories, providing an important strategy for green and efficient chemical production. However, the bottleneck of poor tolerance to harsh industrial environments has become the key factor hampering the productivity of microbial cells. Adaptive evolution is an important method to domesticate microorganisms for a certain period by applying targeted selection pressure to obtain desired phenotypic or physiological properties that are adapted to a specific environment. Recently, with the development of technologies such as microfluidics, biosensors, and omics analysis, adaptive evolution has laid the foundation for efficient productivity of microbial cell factories. Herein, we discuss the key technologies of adaptive evolution and their important applications in improvement of environmental tolerance and production efficiency of microbial cell factories. Moreover, we looked forward to the prospects of adaptive evolution to realize industrial production by microbial cell factories.
Metabolic Engineering
;
Industrial Microbiology/methods*
;
Synthetic Biology
;
Environment
;
Industry
4.Using dynamic molecular switches for shikimic acid production in Escherichia coli.
Jianshen HOU ; Cong GAO ; Xiulai CHEN ; Liming LIU
Chinese Journal of Biotechnology 2020;36(10):2104-2112
Shikimic acid is an intermediate metabolite in the synthesis of aromatic amino acids in Escherichia coli and a synthetic precursor of Tamiflu. The biosynthesis of shikimic acid requires blocking the downstream shikimic acid consuming pathway that leads to inefficient production and cell growth inhibition. In this study, a dynamic molecular switch was constructed by using growth phase-dependent promoters and degrons. This dynamic molecular switch was used to uncouple cell growth from shikimic acid synthesis, resulting in the production of 14.33 g/L shikimic acid after 72 h fermentation. These results show that the dynamic molecular switch could redirect the carbon flux by regulating the abundance of target enzymes, for better production.
Escherichia coli/genetics*
;
Escherichia coli Proteins/genetics*
;
Industrial Microbiology/methods*
;
Metabolic Engineering
;
Shikimic Acid/metabolism*
5.Numerical simulation and optimization of impeller combination used in stirred bioreactor.
Ning DING ; Chao LI ; Li BAI ; Meijin GUO ; Yingping ZHUANG ; Siliang ZHANG
Chinese Journal of Biotechnology 2020;36(6):1209-1215
Bioreactors have been central in monoclonal antibodies and vaccines manufacturing by mammalian cells in suspension culture. Numerical simulation of five impeller combinations in a stirred bioreactor was conducted, and characteristics of velocity vectors, distributions of gas hold-up, distributions of shear rate in the bioreactor using 5 impeller combinations were numerically elucidated. In addition, genetically engineered CHO cells were cultivated in bioreactor installed with 5 different impeller combinations in fed-batch culture mode. The cell growth and antibody level were directly related to the maximum shear rate in the bioreactor, and the highest viable cell density and the peak antibody level were achieved in FBMI3 impeller combination, indicating that CHO cells are sensitive to shear force produced by impeller movement when cells were cultivated in bioreactor at large scale, and the maximum shear rate would play key roles in scaling-up of bioreactor at industrial scale.
Animals
;
Batch Cell Culture Techniques
;
Bioreactors
;
standards
;
CHO Cells
;
Cell Count
;
Computer Simulation
;
Cricetinae
;
Cricetulus
;
Industrial Microbiology
;
instrumentation
;
methods
6.Synthesis of pyrroloquinoline quinone by recombinant Gluconobacter oxydans.
Runle YE ; Feng LI ; Fan DING ; Zhenhui ZHAO ; Sheng CHEN ; Jianfeng YUAN
Chinese Journal of Biotechnology 2020;36(6):1138-1149
Pyrroloquinoline quinone (PQQ), an important redox enzyme cofactor, has many physiological and biochemical functions, and is widely used in food, medicine, health and agriculture industry. In this study, PQQ production by recombinant Gluconobacter oxydans was investigated. First, to reduce the by-product of acetic acid, the recombinant strain G. oxydans T1 was constructed, in which the pyruvate decarboxylase (GOX1081) was knocked out. Then the pqqABCDE gene cluster and tldD gene were fused under the control of endogenous constitutive promoter P0169, to generate the recombinant strain G. oxydans T2. Finally, the medium composition and fermentation conditions were optimized. The biomass of G. oxydans T1 and G. oxydans T2 were increased by 43.02% and 38.76% respectively, and the PQQ production was 4.82 and 20.5 times higher than that of the wild strain, respectively. Furthermore, the carbon sources and culture conditions of G. oxydans T2 were optimized, resulting in a final PQQ yield of (51.32±0.899 7 mg/L), 345.6 times higher than that of the wild strain. In all, the biomass of G. oxydans and the yield of PQQ can be effectively increased by genetic engineering.
Fermentation
;
Gene Knockout Techniques
;
Gluconobacter oxydans
;
genetics
;
metabolism
;
Industrial Microbiology
;
methods
;
Multigene Family
;
genetics
;
Organisms, Genetically Modified
;
PQQ Cofactor
;
biosynthesis
;
genetics
;
Promoter Regions, Genetic
;
genetics
7.Enhanced production of bacitracin via energy metabolism engineering in Bacillus licheniformis DW2.
Qing ZHANG ; Shan ZHU ; Naixiang CUI ; Bowen ZHANG ; Zhi WANG ; Xiaobin CHEN ; Jun LIU ; Junhui LI ; Dongbo CAI ; Zhifan YANG ; Shouwen CHEN ; Xin MA
Chinese Journal of Biotechnology 2020;36(6):1126-1137
Bacitracin is a broad-spectrum cyclic peptide antibiotic, and mainly produced by Bacillus. Energy metabolism plays as a critical role in high-level production of target metabolites. In this study, Bacillus licheniformis DW2, an industrial strain for bacitracin production, was served as the original strain. First, our results confirmed that elimination of cytochrome bd oxidase branch via deleting gene cydB benefited bacitracin synthesis. Bacitracin titer and ATP content were increased by 10.97% and 22.96%, compared with those of original strain, respectively. Then, strengthening cytochrome aa3 oxidase branch via overexpressing gene qoxA was conducive to bacitracin production. Bacitracin titer and ATP content were increased by 18.97% and 34.00%, respectively. In addition, strengthening ADP synthesis supply is also proven as an effective strategy to promote intracellular ATP accumulation, overexpression of adenosine kinase DcK and adenylate kinase AdK could all improve bacitracin titers, among which, dck overexpression strain showed the better performance, and bacitracin titer was increased by 16.78%. Based on the above individual methods, a method of combining the deletion of gene cydB and overexpression of genes qoxA, dck were used to enhance ATP content of cells to 39.54 nmol/L, increased by 49.32% compared to original strain, and bacitracin titer produced by the final strain DW2-CQD (DW2ΔcydB::qoxA::dck) was 954.25 U/mL, increased by 21.66%. The bacitracin titer produced per cell was 2.11 U/CFU, increased by 11.05%. Collectively, this study demonstrates that improving ATP content was an efficient strategy to improve bacitracin production, and a promising strain B. licheniformis DW2-CQD was attained for industrial production of bacitracin.
Bacillus licheniformis
;
metabolism
;
Bacitracin
;
biosynthesis
;
Energy Metabolism
;
genetics
;
Industrial Microbiology
;
methods
8.Concomitant use of immobilized uridine-cytidine kinase and polyphosphate kinase for 5'-cytidine monophosphate production.
Sijia WU ; Jie LI ; Chenlong HU ; Junyu TIAN ; Tong ZHANG ; Ning CHEN ; Xiaoguang FAN
Chinese Journal of Biotechnology 2020;36(5):1002-1011
Uridine-cytidine kinase, an important catalyst in the compensation pathway of nucleotide metabolism, can catalyze the phosphorylation reaction of cytidine to 5'-cytidine monophosphate (CMP), but the reaction needs NTP as the phosphate donor. To increase the production efficiency of CMP, uridine-cytidine kinase gene from Thermus thermophilus HB8 and polyphosphate kinase gene from Rhodobacter sphaeroides were cloned and expressed in Escherichia coli BL21(DE3). Uridine-cytidine kinase was used for the generation of CMP from cytidine and ATP, and polyphosphate kinase was used for the regeneration of ATP. Then, the D403 metal chelate resin was used to adsorb Ni²⁺ to form an immobilized carrier, and the immobilized carrier was specifically combined with the recombinant enzymes to form the immobilized enzymes. Finally, single-factor optimization experiment was carried out to determine the reaction conditions of the immobilized enzyme. At 30 °C and pH 8.0, 60 mmol/L cytidine and 0.5 mmol/L ATP were used as substrates to achieve 5 batches of high-efficiency continuous catalytic reaction, and the average molar yield of CMP reached 91.2%. The above method has the advantages of low reaction cost, high product yield and high enzyme utilization rate, and has good applied value for industrial production.
Cytidine Monophosphate
;
metabolism
;
Escherichia coli
;
genetics
;
Industrial Microbiology
;
methods
;
Phosphotransferases (Phosphate Group Acceptor)
;
metabolism
;
Uridine Kinase
9.Enhancing thermostability of xylanase from rumen microbiota by molecular cyclization.
Kexin ZHOU ; Huan WANG ; Xintao ZHU ; Anqi ZHENG ; Nuo LI ; Xiaobao SUN ; Deying GAO ; Peipei AN ; Jiakun WANG ; Guoying QIAN ; Qian WANG
Chinese Journal of Biotechnology 2020;36(5):920-931
The capacity for thermal tolerance is critical for industrial enzyme. In the past decade, great efforts have been made to endow wild-type enzymes with higher catalytic activity or thermostability using gene engineering and protein engineering strategies. In this study, a recently developed SpyTag/SpyCatcher system, mediated by isopeptide bond-ligation, was used to modify a rumen microbiota-derived xylanase XYN11-6 as cyclized and stable enzyme C-XYN11-6. After incubation at 60, 70 or 80 ℃ for 10 min, the residual activities of C-XYN11-6 were 81.53%, 73.98% or 64.41%, which were 1.48, 2.92 or 3.98-fold of linear enzyme L-XYN11-6, respectively. After exposure to 60-90°C for 10 min, the C-XYN11-6 remained as soluble in suspension, while L-XYN11-6 showed severely aggregation. Intrinsic and 8-anilino-1-naphthalenesulfonic acid (ANS)-binding fluorescence analysis revealed that C-XYN11-6 was more capable of maintaining its conformation during heat challenge, compared with L-XYN11-6. Interestingly, molecular cyclization also conferred C-XYN11-6 with improved resilience to 0.1-50 mmol/L Ca²⁺ or 0.1 mmol/L Cu²⁺ treatment. In summary, we generated a thermal- and ion-stable cyclized enzyme using SpyTag/SpyCatcher system, which will be of particular interest in engineering of enzymes for industrial application.
Animals
;
Cyclization
;
Endo-1,4-beta Xylanases
;
chemistry
;
metabolism
;
Enzyme Stability
;
Industrial Microbiology
;
methods
;
Microbiota
;
Protein Engineering
;
Rumen
;
enzymology
;
microbiology
;
Temperature
10.Optimization of 1,2,4-butanetriol synthetic pathway in Escherichia coli.
Lei SUN ; Fan YANG ; Taicheng ZHU ; Xinghua LI ; Hongbing SUN ; Yin LI ; Zhenghong XU ; Yanping ZHANG
Chinese Journal of Biotechnology 2016;32(1):51-63
1,2,4-Butanetriol (BT) is an important non-natural chemical with a variety of industrial applications. A recombinant Escherichia coli biosynthesizing BT from D-xylose was constructed by heterologously expressing xdh and mdlC, and knocking out competing pathway genes including xylA, xylB, yjhE, yagH and ycdW. To optimize BT synthesis pathway, the third catalytic step that catalyzes the decarboxylation reaction of 3-deoxy-D-glycero-pentulosonic acid was identified as a potential bottleneck. Consequently, 2-keto acid decarboxylases from three different microorganisms were screened, and the kivD gene from Lactococcus lactis was found to increase BT titer by 191%. The improved strain BW-025 reached a final BT titer of 2.38 g/L under optimized transformation conditions. Attempts on synthetic pathway optimization were also made by fine-tuning the expression levels of each enzyme involved in the whole pathway based on BW-025. As a result, an xdh overexpressed recombinant strain, BW-074 was finally generated, with 48.62% higher BT production than that of BW-025.
Butanols
;
metabolism
;
Escherichia coli
;
metabolism
;
Gene Knockout Techniques
;
Genetic Engineering
;
Industrial Microbiology
;
methods
;
Metabolic Networks and Pathways

Result Analysis
Print
Save
E-mail