1.Skin organoid transplantation promotes tissue repair with scarless in frostbite.
Wenwen WANG ; Pu LIU ; Wendi ZHU ; Tianwei LI ; Ying WANG ; Yujie WANG ; Jun LI ; Jie MA ; Ling LENG
Protein & Cell 2025;16(4):240-259
Frostbite is the most common cold injury and is caused by both immediate cold-induced cell death and the gradual development of localized inflammation and tissue ischemia. Delayed healing of frostbite often leads to scar formation, which not only causes psychological distress but also tends to result in the development of secondary malignant tumors. Therefore, a rapid healing method for frostbite wounds is urgently needed. Herein, we used a mouse skin model of frostbite injury to evaluate the recovery process after frostbite. Moreover, single-cell transcriptomics was used to determine the patterns of changes in monocytes, macrophages, epidermal cells, and fibroblasts during frostbite. Most importantly, human-induced pluripotent stem cell (hiPSC)-derived skin organoids combined with gelatin-hydrogel were constructed for the treatment of frostbite. The results showed that skin organoid treatment significantly accelerated wound healing by reducing early inflammation after frostbite and increasing the proportions of epidermal stem cells. Moreover, in the later stage of wound healing, skin organoids reduced the overall proportions of fibroblasts, significantly reduced fibroblast-to-myofibroblast transition by regulating the integrin α5β1-FAK pathway, and remodeled the extracellular matrix (ECM) through degradation and reassembly mechanisms, facilitating the restoration of physiological ECM and reducing the abundance of ECM associated with abnormal scar formation. These results highlight the potential application of organoids for promoting the reversal of frostbite-related injury and the recovery of skin functions. This study provides a new therapeutic alternative for patients suffering from disfigurement and skin dysfunction caused by frostbite.
Animals
;
Organoids/metabolism*
;
Mice
;
Humans
;
Wound Healing
;
Frostbite/metabolism*
;
Skin/pathology*
;
Induced Pluripotent Stem Cells/cytology*
;
Cicatrix/pathology*
;
Fibroblasts/metabolism*
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Extracellular Matrix/metabolism*
;
Male
2.Development of porcine induced pluripotent stem cells with a CD163 reporter system.
Wei YUE ; Juqing ZHANG ; Xiaolong WU ; Xinchun YANG ; Qiaoyan SHEN ; Shuai YU ; Zhenshuo ZHU ; Chengbao WANG ; Shiqiang ZHANG ; Jinlian HUA
Chinese Journal of Biotechnology 2023;39(1):192-203
As main recipient cells for porcine reproductive and respiratory syndrome virus (PRRSV), porcine alveolar macrophage (PAM) are involved in the progress of several highly pathogenic virus infections. However, due to the fact that the PAM cells can only be obtained from primary tissues, research on PAM-based virus-host interactions remains challenging. The improvement of induced pluripotent stem cells (iPSCs) technology provides a new strategy to develop IPSCs-derived PAM cells. Since the CD163 is a macrophage-specific marker and a validated receptor essential for PRRSV infection, generation of stable porcine induced pluripotent stem cells lines containing CD163 reporter system play important roles in the investigation of IPSCs-PAM transition and PAM-based virus-host interaction. Based on the CRISPR/Cas9- mediated gene editing system, we designed a sgRNA targeting CD163 locus and constructed the corresponding donor vectors. To test whether this reporter system has the expected function, the reporter system was introduced into primary PAM cells to detect the expression of RFP. To validate the low effect on stem cell pluripotency, we generated porcine iPSC lines containing CD163 reporter and assessed the pluripotency through multiple assays such as alkaline phosphatase staining, immunofluorescent staining, and EdU staining. The red-fluorescent protein (RFP) expression was detected in CD163-edited PAM cells, suggesting that our reporter system indeed has the ability to reflect the expression of gene CD163. Compared with wild-type (WT) iPSCs, the CD163 reporter-iPSCs display similar pluripotency-associated transcription factors expression. Besides, cells with the reporter system showed consistent cell morphology and proliferation ability as compared to WT iPSCs, indicating that the edited-cells have no effect on stem cell pluripotency. In conclusion, we generated porcine iPSCs that contain a CD163 reporter system. Our results demonstrated that this reporter system was functional and safe. This study provides a platform to investigate the iPS-PAM development and virus-host interaction in PAM cells.
Swine
;
Animals
;
Induced Pluripotent Stem Cells/metabolism*
;
Receptors, Cell Surface/genetics*
;
Antigens, CD/metabolism*
;
Porcine respiratory and reproductive syndrome virus/genetics*
3.Rapamycin mediated caspase 9 homodimerization to safeguard human pluripotent stem cell therapy.
Yang YANG ; Yang LIU ; Min CHEN ; Shuangpeng LI ; Xuan LU ; Yu HE ; Kun ZHANG ; Qingjian ZOU
Chinese Journal of Biotechnology 2023;39(10):4098-4107
Human induced pluripotent stem cells (hiPSCs) are promising in regenerative medicine. However, the pluripotent stem cells (PSCs) may form clumps of cancerous tissue, which is a major safety concern in PSCs therapies. Rapamycin is a safe and widely used immunosuppressive pharmaceutical that acts through heterodimerization of the FKBP12 and FRB fragment. Here, we aimed to insert a rapamycin inducible caspase 9 (riC9) gene in a safe harbor AAVS1 site to safeguard hiPSCs therapy by drug induced homodimerization. The donor vector containing an EF1α promoter, a FRB-FKBP-Caspase 9 (CARD domain) fusion protein and a puromycin resistant gene was constructed and co-transfected with sgRNA/Cas9 vector into hiPSCs. After one to two weeks screening with puromycin, single clones were collected for genotype and phenotype analysis. Finally, rapamycin was used to induce the homodimerization of caspase 9 to activate the apoptosis of the engineered cells. After transfection of hiPSCs followed by puromycin screening, five cell clones were collected. Genome amplification and sequencing showed that the donor DNA has been precisely knocked out at the endogenous AAVS1 site. The engineered hiPSCs showed normal pluripotency and proliferative capacity. Rapamycin induced caspase 9 activation, which led to the apoptosis of all engineered hiPSCs and its differentiated cells with different sensitivity to drugs. In conclusion, we generated a rapamycin-controllable hiPSCs survival by homodimerization of caspase 9 to turn on cell apoptosis. It provides a new strategy to guarantee the safety of the hiPSCs therapy.
Humans
;
Induced Pluripotent Stem Cells
;
Sirolimus/metabolism*
;
Caspase 9/metabolism*
;
RNA, Guide, CRISPR-Cas Systems
;
Pluripotent Stem Cells/metabolism*
;
Cell Differentiation
;
Puromycin/metabolism*
4.Killing effect of anti-MSLN-iCAR-NK cells derived from induced pluripotent stem cells on ovarian epithelial cancer cells.
Ru Jia FAN ; Yun Feng ZHANG ; Yi Ying WANG ; Yue WANG ; Wenxin ZHENG
Chinese Journal of Obstetrics and Gynecology 2023;58(12):922-929
Objective: To investigate the cytotoxic effects of induced pluripotent stem (iPS) cells of anti-mesothelin (MSLN)-chimeric antigen receptor natural killer (CAR-NK) cells (anti-MSLN-iCAR-NK cells) on ovarian epithelial cancer cells. Methods: Twenty cases of ovarian cancer patients who underwent surgical treatment at Henan Provincial People's Hospital from September 2020 to September 2021 were collected, and 20 cases of normal ovarian tissues resected during the same period due to other benign diseases were also collected. (1) Immunohistochemistry and immunofluorescence were used to verify the expression of MSLN protein in ovarian cancer tissues. (2) Fresh ovarian cancer tissues were extracted and cultured to obtain primary ovarian cancer cells. Recombinant lentiviral vectors targeting anti-MSLN-CAR-CD244 were constructed and co-cultured with iPS cells to obtain anti-MSLN-iCAR cells. These cells were differentiated into anti-MSLN-iCAR-NK cells using cytokine-induced differentiation method. The cell experiments were divided into three groups: anti-MSLN-iCAR-NK cell group, natural killer (NK) cell group, and control group. (3) Flow cytometry and live cell staining experiment were used to detect the apoptosis of ovarian cancer cells in the three groups. (4) Enzyme-linked immunosorbent assay (ELISA) was used to measure the expression levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), granzyme B (GZMB), perforin 1 (PRF1), interleukin (IL)-6, and IL-10 in the three groups of ovarian cancer cells. Results: (1) Immunohistochemistry analysis showed that a positive expression rate of MSLN protein in ovarian cancer tissues of 65% (13/20), while normal ovarian tissues had a positive rate of 30% (6/20). The comparison between the two groups was statistically significant (χ2=4.912, P=0.027). Immunofluorescence analysis revealed that the positive expression rate of MSLN protein in ovarian cancer tissues was 70% (14/20), while normal ovarian tissues had a positive rate of 30% (6/20). The comparison between the two groups was statistically significant (χ2=6.400, P=0.011). (2) Flow cytometry analysis showed that the apoptotic rate of ovarian cancer cells in the anti-MSLN-iCAR-NK cell group was (29.27±0.85)%, while in the NK cell group and control group were (8.44±0.34)% and (6.83±0.26)% respectively. There were statistically significant differences in the comparisons between the three groups (all P<0.01). Live cell staining experiment showed that the ratio of dead cells to live cells in the anti-MSLN-iCAR-NK cell group was (36.3±8.3)%, while in the NK cell group and control group were (5.4±1.4)% and (2.0±1.3)% respectively. There were statistically significant differences in the comparisons between the three groups (all P<0.001). (3) ELISA analysis revealed that the expression levels of IFN-γ, TNF-α, GZMB, PRF1, IL-6, and IL-10 in ovarian cancer cells of the anti-MSLN-iCAR-NK cell group were significantly higher than those in the NK cell group and the control group (all P<0.05). Conclusion: The anti-MSLN-iCAR-NK cells exhibit a strong killing ability against ovarian cancer cells, indicating their potential as a novel immunotherapy approach for ovarian cancer.
Humans
;
Female
;
Carcinoma, Ovarian Epithelial/metabolism*
;
Ovarian Neoplasms/metabolism*
;
Interleukin-10/pharmacology*
;
Induced Pluripotent Stem Cells/metabolism*
;
Iron-Dextran Complex/pharmacology*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Cell Line, Tumor
;
Killer Cells, Natural
;
Interleukin-6
5.The chemical reprogramming of unipotent adult germ cells towards authentic pluripotency and de novo establishment of imprinting.
Yuhan CHEN ; Jiansen LU ; Yanwen XU ; Yaping HUANG ; Dazhuang WANG ; Peiling LIANG ; Shaofang REN ; Xuesong HU ; Yewen QIN ; Wei KE ; Ralf JAUCH ; Andrew Paul HUTCHINS ; Mei WANG ; Fuchou TANG ; Xiao-Yang ZHAO
Protein & Cell 2023;14(7):477-496
Although somatic cells can be reprogrammed to pluripotent stem cells (PSCs) with pure chemicals, authentic pluripotency of chemically induced pluripotent stem cells (CiPSCs) has never been achieved through tetraploid complementation assay. Spontaneous reprogramming of spermatogonial stem cells (SSCs) was another non-transgenic way to obtain PSCs, but this process lacks mechanistic explanation. Here, we reconstructed the trajectory of mouse SSC reprogramming and developed a five-chemical combination, boosting the reprogramming efficiency by nearly 80- to 100-folds. More importantly, chemical induced germline-derived PSCs (5C-gPSCs), but not gPSCs and chemical induced pluripotent stem cells, had authentic pluripotency, as determined by tetraploid complementation. Mechanistically, SSCs traversed through an inverted pathway of in vivo germ cell development, exhibiting the expression signatures and DNA methylation dynamics from spermatogonia to primordial germ cells and further to epiblasts. Besides, SSC-specific imprinting control regions switched from biallelic methylated states to monoallelic methylated states by imprinting demethylation and then re-methylation on one of the two alleles in 5C-gPSCs, which was apparently distinct with the imprinting reprogramming in vivo as DNA methylation simultaneously occurred on both alleles. Our work sheds light on the unique regulatory network underpinning SSC reprogramming, providing insights to understand generic mechanisms for cell-fate decision and epigenetic-related disorders in regenerative medicine.
Male
;
Mice
;
Animals
;
Cellular Reprogramming/genetics*
;
Tetraploidy
;
Pluripotent Stem Cells/metabolism*
;
Induced Pluripotent Stem Cells/metabolism*
;
DNA Methylation
;
Spermatogonia/metabolism*
;
Germ Cells/metabolism*
6.Hypoxia promotes differentiation of human induced pluripotent stem cells into embryoid bodies in vitro.
Li Jun FANG ; Zi Bei FENG ; Jing Yi MEI ; Jia Hui ZHOU ; Zhan Yi LIN
Journal of Southern Medical University 2022;42(6):929-936
OBJECTIVE:
To investigate effects of physiological hypoxic conditions on suspension and adherence of embryoid bodies (EBs) during differentiation of human induced pluripotent stem cells (hiPSCs) and explore the underlying mechanisms.
METHODS:
EBs in suspension culture were divided into normoxic (21% O2) and hypoxic (5% O2) groups, and those in adherent culture were divided into normoxic, hypoxic and hypoxia + HIF-1α inhibitor (echinomycin) groups. After characterization of the pluripotency with immunofluorescence assay, the hiPSCs were digested and suspended under normoxic and hypoxic conditions for 5 days, and the formation and morphological changes of the EBs were observed microscopically; the expressions of the markers genes of the 3 germ layers in the EBs were detected. The EBs were then inoculated into petri dishes for further culture in normoxic and hypoxic conditions for another 2 days, after which the adhesion and peripheral expansion rate of the adherent EBs were observed; the changes in the expressions of HIF-1α, β-catenin and VEGFA were detected in response to hypoxic culture and echinomycin treatment.
RESULTS:
The EBs cultured in normoxic and hypoxic conditions were all capable of differentiation into the 3 germ layers. The EBs cultured in hypoxic conditions showed reduced apoptotic debris around them with earlier appearance of cystic EBs and more uniform sizes as compared with those in normoxic culture. Hypoxic culture induced more adherent EBs than normoxic culture (P < 0.05) with also a greater outgrowth rate of the adherent EBs (P < 0.05). The EBs in hypoxic culture showed significantly up-regulated mRNA expressions of β-catenin and VEGFA (P < 0.05) and protein expressions of HIF-1 α, β-catenin and VEGFA (P < 0.05), and their protein expresisons levels were significantly lowered after treatment with echinomycin (P < 0.05).
CONCLUSION
Hypoxia can promote the formation and maturation of suspended EBs and enhance their adherence and post-adherent proliferation without affecting their pluripotency for differentiation into all the 3 germ layers. Our results provide preliminary evidence that activation of HIF-1α/β-catenin/VEGFA signaling pathway can enhance the differentiation potential of hiPSCs.
Echinomycin/metabolism*
;
Embryoid Bodies/metabolism*
;
Humans
;
Hypoxia/metabolism*
;
Induced Pluripotent Stem Cells/metabolism*
;
beta Catenin/metabolism*
7.Intermittent compressive force induces cell cycling and reduces apoptosis in embryoid bodies of mouse induced pluripotent stem cells.
Jeeranan MANOKAWINCHOKE ; Phoonsuk LIMRAKSASIN ; Hiroko OKAWA ; Prasit PAVASANT ; Hiroshi EGUSA ; Thanaphum OSATHANON
International Journal of Oral Science 2022;14(1):1-1
In vitro manipulation of induced pluripotent stem cells (iPSCs) by environmental factors is of great interest for three-dimensional (3D) tissue/organ induction. The effects of mechanical force depend on many factors, including force and cell type. However, information on such effects in iPSCs is lacking. The aim of this study was to identify a molecular mechanism in iPSCs responding to intermittent compressive force (ICF) by analyzing the global gene expression profile. Embryoid bodies of mouse iPSCs, attached on a tissue culture plate in 3D form, were subjected to ICF in serum-free culture medium for 24 h. Gene ontology analyses for RNA sequencing data demonstrated that genes differentially regulated by ICF were mainly associated with metabolic processes, membrane and protein binding. Topology-based analysis demonstrated that ICF induced genes in cell cycle categories and downregulated genes associated with metabolic processes. The Kyoto Encyclopedia of Genes and Genomes database revealed differentially regulated genes related to the p53 signaling pathway and cell cycle. qPCR analysis demonstrated significant upregulation of Ccnd1, Cdk6 and Ccng1. Flow cytometry showed that ICF induced cell cycle and proliferation, while reducing the number of apoptotic cells. ICF also upregulated transforming growth factor β1 (Tgfb1) at both mRNA and protein levels, and pretreatment with a TGF-β inhibitor (SB431542) prior to ICF abolished ICF-induced Ccnd1 and Cdk6 expression. Taken together, these findings show that TGF-β signaling in iPSCs enhances proliferation and decreases apoptosis in response to ICF, that could give rise to an efficient protocol to manipulate iPSCs for organoid fabrication.
Animals
;
Apoptosis
;
Cell Cycle
;
Cell Differentiation
;
Embryoid Bodies
;
Induced Pluripotent Stem Cells/metabolism*
;
Mice
;
Transforming Growth Factor beta/pharmacology*
8.Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs.
Yi YANG ; Han WU ; Xiangjin KANG ; Yanhui LIANG ; Ting LAN ; Tianjie LI ; Tao TAN ; Jiangyun PENG ; Quanjun ZHANG ; Geng AN ; Yali LIU ; Qian YU ; Zhenglai MA ; Ying LIAN ; Boon Seng SOH ; Qingfeng CHEN ; Ping LIU ; Yaoyong CHEN ; Xiaofang SUN ; Rong LI ; Xiumei ZHEN ; Ping LIU ; Yang YU ; Xiaoping LI ; Yong FAN
Protein & Cell 2018;9(3):283-297
Mitochondrial diseases are maternally inherited heterogeneous disorders that are primarily caused by mitochondrial DNA (mtDNA) mutations. Depending on the ratio of mutant to wild-type mtDNA, known as heteroplasmy, mitochondrial defects can result in a wide spectrum of clinical manifestations. Mitochondria-targeted endonucleases provide an alternative avenue for treating mitochondrial disorders via targeted destruction of the mutant mtDNA and induction of heteroplasmic shifting. Here, we generated mitochondrial disease patient-specific induced pluripotent stem cells (MiPSCs) that harbored a high proportion of m.3243A>G mtDNA mutations and caused mitochondrial encephalomyopathy and stroke-like episodes (MELAS). We engineered mitochondrial-targeted transcription activator-like effector nucleases (mitoTALENs) and successfully eliminated the m.3243A>G mutation in MiPSCs. Off-target mutagenesis was not detected in the targeted MiPSC clones. Utilizing a dual fluorescence iPSC reporter cell line expressing a 3243G mutant mtDNA sequence in the nuclear genome, mitoTALENs displayed a significantly limited ability to target the nuclear genome compared with nuclear-localized TALENs. Moreover, genetically rescued MiPSCs displayed normal mitochondrial respiration and energy production. Moreover, neuronal progenitor cells differentiated from the rescued MiPSCs also demonstrated normal metabolic profiles. Furthermore, we successfully achieved reduction in the human m.3243A>G mtDNA mutation in porcine oocytes via injection of mitoTALEN mRNA. Our study shows the great potential for using mitoTALENs for specific targeting of mutant mtDNA both in iPSCs and mammalian oocytes, which not only provides a new avenue for studying mitochondrial biology and disease but also suggests a potential therapeutic approach for the treatment of mitochondrial disease, as well as the prevention of germline transmission of mutant mtDNA.
Animals
;
DNA, Mitochondrial
;
genetics
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
metabolism
;
MELAS Syndrome
;
genetics
;
Male
;
Mice
;
Microsatellite Repeats
;
genetics
;
Mitochondria
;
genetics
;
metabolism
;
Mutation
;
genetics
9.CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs.
Lixia WANG ; Fei YI ; Lina FU ; Jiping YANG ; Si WANG ; Zhaoxia WANG ; Keiichiro SUZUKI ; Liang SUN ; Xiuling XU ; Yang YU ; Jie QIAO ; Juan Carlos Izpisua BELMONTE ; Ze YANG ; Yun YUAN ; Jing QU ; Guang-Hui LIU
Protein & Cell 2017;8(5):365-378
Amyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1 and FUS mutations, respectively. We further generated gene corrected ALS iPSCs using CRISPR/Cas9 system. Genome-wide RNA sequencing (RNA-seq) analysis of motor neurons derived from SOD1 and corrected iPSCs revealed 899 aberrant transcripts. Our work may shed light on discovery of early biomarkers and pathways dysregulated in ALS, as well as provide a basis for novel therapeutic strategies to treat ALS.
Amyotrophic Lateral Sclerosis
;
genetics
;
metabolism
;
therapy
;
Cell Line
;
Clustered Regularly Interspaced Short Palindromic Repeats
;
Genetic Therapy
;
Genome-Wide Association Study
;
Humans
;
Induced Pluripotent Stem Cells
;
metabolism
;
Mutation, Missense
;
RNA-Binding Protein FUS
;
genetics
;
metabolism
;
Superoxide Dismutase-1
;
genetics
;
metabolism
10.Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury.
Protein & Cell 2017;8(4):273-283
Tissue damage induces cells into reprogramming-like cellular state, which contributes to tissue regeneration. However, whether factors promoting the cell reprogramming favor tissue regeneration remains elusive. Here we identified combination of small chemical compounds including drug cocktails robustly promoting in vitro cell reprogramming. We then administrated the drug cocktails to mice with acute liver injuries induced by partial hepatectomy or toxic treatment. Our results demonstrated that the drug cocktails which promoted cell reprogramming in vitro improved liver regeneration and hepatic function in vivo after acute injuries. The underlying mechanism could be that expression of pluripotent genes activated after injury is further upregulated by drug cocktails. Thus our study offers proof-of-concept evidence that cocktail of clinical compounds improving cell reprogramming favors tissue recovery after acute damages, which is an attractive strategy for regenerative purpose.
Animals
;
Cellular Reprogramming
;
drug effects
;
Cellular Reprogramming Techniques
;
methods
;
Induced Pluripotent Stem Cells
;
cytology
;
metabolism
;
Mice

Result Analysis
Print
Save
E-mail