1.Stem Cell Properties of Therapeutic Potential.
The Korean Journal of Gastroenterology 2011;58(3):125-132
Stem cell research is a innovative technology that focuses on using undifferentiated cells able to self-renew through the asymmetrical or symmetrical divisions. Three types of stem cells have been studied in laboratory including embryonic stem cell, adult stem cells and induced pluripotent stem cells. Embryonic stem cells are pluripotent stem cells derived from the inner cell mass and it can give rise to any fetal or adult cell type. Adult stem cells are multipotent, have the ability to differentiate into a limited number of specialized cell types, and have been obtained from the bone marrow, umbilical cord blood, placenta and adipose tissue. Stem cell therapy is the most promising therapy for several degenerative and devastating diseases including digestive tract disease such as liver failure, inflammatory bowel disease, Celiac sprue, and pancreatitis. Further understanding of biological properties of stem cells will lead to safe and successful stem cell therapies.
Adult Stem Cells/cytology/metabolism/transplantation
;
Embryonic Stem Cells/cytology/metabolism/transplantation
;
Humans
;
Induced Pluripotent Stem Cells/cytology/metabolism/transplantation
;
Stem Cells/*cytology/metabolism
2.Neural stem cells: mechanisms and modeling.
Jun YAO ; Yangling MU ; Fred H GAGE
Protein & Cell 2012;3(4):251-261
In the adult brain, neural stem cells have been found in two major niches: the dentate gyrus and the subventricular zone [corrected]. Neurons derived from these stem cells contribute to learning, memory, and the autonomous repair of the brain under pathological conditions. Hence, the physiology of adult neural stem cells has become a significant component of research on synaptic plasticity and neuronal disorders. In addition, the recently developed induced pluripotent stem cell technique provides a powerful tool for researchers engaged in the pathological and pharmacological study of neuronal disorders. In this review, we briefly summarize the research progress in neural stem cells in the adult brain and in the neuropathological application of the induced pluripotent stem cell technique.
Hippocampus
;
cytology
;
metabolism
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
metabolism
;
Models, Biological
;
Neural Stem Cells
;
cytology
;
metabolism
;
transplantation
;
Neurodegenerative Diseases
;
metabolism
;
pathology
;
prevention & control
;
Neurogenesis
;
Signal Transduction
3.Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases.
Rui LI ; Ye BAI ; Tongtong LIU ; Xiaoqun WANG ; Qian WU
Protein & Cell 2013;4(6):415-424
Human embryonic stem cells (hESCs) are pluripotent cells that have the ability of unlimited self-renewal and can be differentiated into different cell lineages, including neural stem (NS) cells. Diverse regulatory signaling pathways of neural stem cells differentiation have been discovered, and this will be of great benefit to uncover the mechanisms of neuronal differentiation in vivo and in vitro. However, the limitations of hESCs resource along with the religious and ethical concerns impede the progress of ESCs application. Therefore, the induced pluripotent stem cells (iPSCs) via somatic cell reprogramming have opened up another new territory for regenerative medicine. iPSCs now can be derived from a number of lineages of cells, and are able to differentiate into certain cell types, including neurons. Patient-specifi c iPSCs are being used in human neurodegenerative disease modeling and drug screening. Furthermore, with the development of somatic direct reprogramming or lineage reprogramming technique, a more effective approach for regenerative medicine could become a complement for iPSCs.
Cell Differentiation
;
Cell Lineage
;
Cell Transdifferentiation
;
Cellular Reprogramming
;
drug effects
;
Embryonic Stem Cells
;
cytology
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
transplantation
;
Neural Stem Cells
;
cytology
;
transplantation
;
Neurodegenerative Diseases
;
therapy
;
Regenerative Medicine
;
Transcription Factors
;
genetics
;
metabolism
4.The propensity for tumorigenesis in human induced pluripotent stem cells is related with genomic instability.
Yi LIANG ; Hui ZHANG ; Qi-Sheng FENG ; Man-Bo CAI ; Wen DENG ; Dajiang QIN ; Jing-Ping YUN ; George Sai Wah TSAO ; Tiebang KANG ; Miguel Angel ESTEBAN ; Duanqing PEI ; Yi-Xin ZENG
Chinese Journal of Cancer 2013;32(4):205-212
The discovery of induced pluripotent stem cells(iPSCs) is a promising advancement in the field of regenerative medicine. Previous studies have indicated that the teratoma-forming propensity of iPSCs is variable; however, the relationship between tumorigenic potential and genomic instability in human iPSCs (HiPSCs) remains to be fully elucidated. Here, we evaluated the malignant potential of HiPSCs by using both colony formation assays and tumorigenicity tests. We demonstrated that HiPSCs formed tumorigenic colonies when grown in cancer cell culture medium and produced malignancies in immunodeficient mice. Furthermore, we analyzed genomic instability in HiPSCs using whole-genome copy number variation analysis and determined that the extent of genomic instability was related with both the cells' propensity to form colonies and their potential for tumorigenesis. These findings indicate a risk for potential malignancy of HiPSCs derived from genomic instability and suggest that quality control tests, including comprehensive tumorigenicity assays and genomic integrity validation, should be rigorously executed before the clinical application of HiPSCs. In addition, HiPSCs should be generated through the use of combined factors or other approaches that decrease the likelihood of genomic instability.
Animals
;
Carcinogenesis
;
Cells, Cultured
;
DNA Copy Number Variations
;
Genomic Instability
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
metabolism
;
transplantation
;
Mice
;
Mice, SCID
;
NIH 3T3 Cells
;
Octamer Transcription Factor-3
;
metabolism
;
Teratocarcinoma
;
etiology
;
Teratoma
;
etiology
;
Tumor Stem Cell Assay