1.Neural stem cells: mechanisms and modeling.
Jun YAO ; Yangling MU ; Fred H GAGE
Protein & Cell 2012;3(4):251-261
In the adult brain, neural stem cells have been found in two major niches: the dentate gyrus and the subventricular zone [corrected]. Neurons derived from these stem cells contribute to learning, memory, and the autonomous repair of the brain under pathological conditions. Hence, the physiology of adult neural stem cells has become a significant component of research on synaptic plasticity and neuronal disorders. In addition, the recently developed induced pluripotent stem cell technique provides a powerful tool for researchers engaged in the pathological and pharmacological study of neuronal disorders. In this review, we briefly summarize the research progress in neural stem cells in the adult brain and in the neuropathological application of the induced pluripotent stem cell technique.
Hippocampus
;
cytology
;
metabolism
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
metabolism
;
Models, Biological
;
Neural Stem Cells
;
cytology
;
metabolism
;
transplantation
;
Neurodegenerative Diseases
;
metabolism
;
pathology
;
prevention & control
;
Neurogenesis
;
Signal Transduction
2.Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery.
Jiho JANG ; Jeong Eun YOO ; Jeong Ah LEE ; Dongjin R LEE ; Ji Young KIM ; Yong Jun HUH ; Dae Sung KIM ; Chul Yong PARK ; Dong Youn HWANG ; Han Soo KIM ; Hoon Chul KANG ; Dong Wook KIM
Experimental & Molecular Medicine 2012;44(3):202-213
The generation of disease-specific induced pluripotent stem cell (iPSC) lines from patients with incurable diseases is a promising approach for studying disease mechanisms and drug screening. Such innovation enables to obtain autologous cell sources in regenerative medicine. Herein, we report the generation and characterization of iPSCs from fibroblasts of patients with sporadic or familial diseases, including Parkinson's disease (PD), Alzheimer's disease (AD), juvenile-onset, type I diabetes mellitus (JDM), and Duchenne type muscular dystrophy (DMD), as well as from normal human fibroblasts (WT). As an example to modeling disease using disease-specific iPSCs, we also discuss the previously established childhood cerebral adrenoleukodystrophy (CCALD)- and adrenomyeloneuropathy (AMN)-iPSCs by our group. Through DNA fingerprinting analysis, the origins of generated disease-specific iPSC lines were identified. Each iPSC line exhibited an intense alkaline phosphatase activity, expression of pluripotent markers, and the potential to differentiate into all three embryonic germ layers: the ectoderm, endoderm, and mesoderm. Expression of endogenous pluripotent markers and downregulation of retrovirus-delivered transgenes [OCT4 (POU5F1), SOX2, KLF4, and c-MYC] were observed in the generated iPSCs. Collectively, our results demonstrated that disease-specific iPSC lines characteristically resembled hESC lines. Furthermore, we were able to differentiate PD-iPSCs, one of the disease-specific-iPSC lines we generated, into dopaminergic (DA) neurons, the cell type mostly affected by PD. These PD-specific DA neurons along with other examples of cell models derived from disease-specific iPSCs would provide a powerful platform for examining the pathophysiology of relevant diseases at the cellular and molecular levels and for developing new drugs and therapeutic regimens.
Alzheimer Disease/genetics/*pathology
;
Cell Differentiation
;
Cells, Cultured
;
Diabetes Mellitus, Type 1/genetics/*pathology
;
Drug Discovery/*methods
;
Fibroblasts/cytology/metabolism/pathology
;
Gene Expression
;
Humans
;
Induced Pluripotent Stem Cells/cytology/metabolism/*pathology
;
Muscular Dystrophy, Duchenne/genetics/*pathology
;
Parkinson Disease/genetics/*pathology
3.Establishment of hepatic and neural differentiation platforms of Wilson's disease specific induced pluripotent stem cells.
Fei YI ; Jing QU ; Mo LI ; Keiichiro SUZUKI ; Na Young KIM ; Guang-Hui LIU ; Juan Carlos Izpisua BELMONTE
Protein & Cell 2012;3(11):855-863
The combination of disease-specific human induced pluripotent stem cells (iPSC) and directed cell differentiation offers an ideal platform for modeling and studying many inherited human diseases. Wilson's disease (WD) is a monogenic disorder of toxic copper accumulation caused by pathologic mutations of the ATP7B gene. WD affects multiple organs with primary manifestations in the liver and central nervous system (CNS). In order to better investigate the cellular pathogenesis of WD and to develop novel therapies against various WD syndromes, we sought to establish a comprehensive platform to differentiate WD patient iPSC into both hepatic and neural lineages. Here we report the generation of patient iPSC bearing a Caucasian population hotspot mutation of ATP7B. Combining with directed cell differentiation strategies, we successfully differentiated WD iPSC into hepatocyte-like cells, neural stem cells and neurons. Gene expression analysis and cDNA sequencing confirmed the expression of the mutant ATP7B gene in all differentiated cells. Hence we established a platform for studying both hepatic and neural abnormalities of WD, which may provide a new tool for tissue-specific disease modeling and drug screening in the future.
Adenosine Triphosphatases
;
genetics
;
metabolism
;
Cation Transport Proteins
;
genetics
;
metabolism
;
Cell Differentiation
;
Copper-transporting ATPases
;
Hep G2 Cells
;
Hepatocytes
;
cytology
;
metabolism
;
Hepatolenticular Degeneration
;
metabolism
;
pathology
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
Mutation
;
Neural Stem Cells
;
cytology
;
metabolism
;
Neurons
;
cytology
;
metabolism
;
Sequence Analysis, DNA
4.Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease.
Rui LI ; Le SUN ; Ai FANG ; Peng LI ; Qian WU ; Xiaoqun WANG
Protein & Cell 2017;8(11):823-833
The development of a cerebral organoid culture in vitro offers an opportunity to generate human brain-like organs to investigate mechanisms of human disease that are specific to the neurogenesis of radial glial (RG) and outer radial glial (oRG) cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing neocortex. Modeling neuronal progenitors and the organization that produces mature subcortical neuron subtypes during early stages of development is essential for studying human brain developmental diseases. Several previous efforts have shown to grow neural organoid in culture dishes successfully, however we demonstrate a new paradigm that recapitulates neocortical development process with VZ, OSVZ formation and the lamination organization of cortical layer structure. In addition, using patient-specific induced pluripotent stem cells (iPSCs) with dysfunction of the Aspm gene from a primary microcephaly patient, we demonstrate neurogenesis defects result in defective neuronal activity in patient organoids, suggesting a new strategy to study human developmental diseases in central nerve system.
Action Potentials
;
physiology
;
Biomarkers
;
metabolism
;
Cell Culture Techniques
;
Embryoid Bodies
;
cytology
;
metabolism
;
Gene Expression
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
metabolism
;
Lateral Ventricles
;
cytology
;
growth & development
;
metabolism
;
Microcephaly
;
genetics
;
metabolism
;
pathology
;
Models, Biological
;
Mutation
;
Neocortex
;
cytology
;
growth & development
;
metabolism
;
Nerve Tissue Proteins
;
deficiency
;
genetics
;
Neurogenesis
;
genetics
;
Neurons
;
cytology
;
metabolism
;
Organoids
;
cytology
;
metabolism
;
PAX6 Transcription Factor
;
genetics
;
metabolism
;
Patch-Clamp Techniques
;
SOXB1 Transcription Factors
;
genetics
;
metabolism
;
Zonula Occludens-1 Protein
;
genetics
;
metabolism