1.Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury.
Protein & Cell 2017;8(4):273-283
Tissue damage induces cells into reprogramming-like cellular state, which contributes to tissue regeneration. However, whether factors promoting the cell reprogramming favor tissue regeneration remains elusive. Here we identified combination of small chemical compounds including drug cocktails robustly promoting in vitro cell reprogramming. We then administrated the drug cocktails to mice with acute liver injuries induced by partial hepatectomy or toxic treatment. Our results demonstrated that the drug cocktails which promoted cell reprogramming in vitro improved liver regeneration and hepatic function in vivo after acute injuries. The underlying mechanism could be that expression of pluripotent genes activated after injury is further upregulated by drug cocktails. Thus our study offers proof-of-concept evidence that cocktail of clinical compounds improving cell reprogramming favors tissue recovery after acute damages, which is an attractive strategy for regenerative purpose.
Animals
;
Cellular Reprogramming
;
drug effects
;
Cellular Reprogramming Techniques
;
methods
;
Induced Pluripotent Stem Cells
;
cytology
;
metabolism
;
Mice
2.Efficient derivation of functional hepatocytes from mouse induced pluripotent stem cells by a combination of cytokines and sodium butyrate.
Qi ZHANG ; Yang YANG ; Jian ZHANG ; Guo-Ying WANG ; Wei LIU ; Dong-Bo QIU ; Zi-Qing HEI ; Qi-Long YING ; Gui-Hua CHEN
Chinese Medical Journal 2011;124(22):3786-3793
BACKGROUNDHepatocyte transplantation has been proposed as an alternative to whole-organ transplantation to support many forms of hepatic insufficiency. Unfortunately, the lack of donor livers makes it difficult to obtain enough viable human hepatocytes for hepatocyte-based therapies. Therefore, it is urgent to find new ways to provide ample hepatocytes. Induced pluripotent stem (iPS) cells, a breakthrough in stem cell research, may terminate these hinders for cell transplantation. For the promise of iPS cells to be realized in liver diseases, it is necessary to determine if and how efficient they can be differentiated into functional hepatocytes.
METHODSIn this study, we directly compared the hepatic-differentiation capacity of mouse iPS cells and embryonic stem (ES) cells with three different induction approaches: conditions via embryonic body (EB) formation plus cytokines, conditions by combination of dimethyl sulfoxide and sodium butyrate and chemically defined, serum free monolayer conditions. Among these three induction conditions, more homogenous populations can be promoted under chemically defined, serum free conditions. The cells generated under these conditions exhibited hepatic functions in vitro, including glycogen storage, indocynine green (ICG) uptake and release as well as urea secretion. Although efficient hepatocytes differentiation from mouse iPS cells were observed, mouse iPS cells showed relatively lower hepatic induction efficiency compared with mouse ES cells.
RESULTSMouse iPS cells would be efficiently differentiated into functional hepatocytes in vitro, which may be helpful in facilitating the development of hepatocytes for transplantation and for research on drug discovery.
CONCLUSIONWe demonstrate that mouse iPS cells retain full potential for fetal liver development and describe procedures that facilitates the efficient generation of highly differentiated human hepatocyte-like cells from iPS cells in vitro.
Animals ; Butyrates ; pharmacology ; Cell Differentiation ; drug effects ; Cells, Cultured ; Cytokines ; pharmacology ; Embryonic Stem Cells ; cytology ; drug effects ; Hepatocytes ; cytology ; drug effects ; metabolism ; Induced Pluripotent Stem Cells ; cytology ; drug effects ; Mice ; Reverse Transcriptase Polymerase Chain Reaction
3.Implications and limitations of cellular reprogramming for psychiatric drug development.
Brian T D TOBE ; Michael G BRANDEL ; Jeffrey S NYE ; Evan Y SNYDER
Experimental & Molecular Medicine 2013;45(11):e59-
Human-induced pluripotent stem cells (hiPSCs) derived from somatic cells of patients have opened possibilities for in vitro modeling of the physiology of neural (and other) cells in psychiatric disease states. Issues in early stages of technology development include (1) establishing a library of cells from adequately phenotyped patients, (2) streamlining laborious, costly hiPSC derivation and characterization, (3) assessing whether mutations or other alterations introduced by reprogramming confound interpretation, (4) developing efficient differentiation strategies to relevant cell types, (5) identifying discernible cellular phenotypes meaningful for cyclic, stress induced or relapsing-remitting diseases, (6) converting phenotypes to screening assays suitable for genome-wide mechanistic studies or large collection compound testing and (7) controlling for variability in relation to disease specificity amidst low sample numbers. Coordination of material for reprogramming from patients well-characterized clinically, genetically and with neuroimaging are beginning, and initial studies have begun to identify cellular phenotypes. Finally, several psychiatric drugs have been found to alter reprogramming efficiency in vitro, suggesting further complexity in applying hiPSCs to psychiatric diseases or that some drugs influence neural differentiation moreso than generally recognized. Despite these challenges, studies utilizing hiPSCs may eventually serve to fill essential niches in the translational pipeline for the discovery of new therapeutics.
Animals
;
Antipsychotic Agents/pharmacology
;
*Drug Discovery
;
Humans
;
Induced Pluripotent Stem Cells/cytology/*drug effects/metabolism
;
Mental Disorders/*drug therapy/metabolism
;
*Nuclear Reprogramming
4.Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases.
Rui LI ; Ye BAI ; Tongtong LIU ; Xiaoqun WANG ; Qian WU
Protein & Cell 2013;4(6):415-424
Human embryonic stem cells (hESCs) are pluripotent cells that have the ability of unlimited self-renewal and can be differentiated into different cell lineages, including neural stem (NS) cells. Diverse regulatory signaling pathways of neural stem cells differentiation have been discovered, and this will be of great benefit to uncover the mechanisms of neuronal differentiation in vivo and in vitro. However, the limitations of hESCs resource along with the religious and ethical concerns impede the progress of ESCs application. Therefore, the induced pluripotent stem cells (iPSCs) via somatic cell reprogramming have opened up another new territory for regenerative medicine. iPSCs now can be derived from a number of lineages of cells, and are able to differentiate into certain cell types, including neurons. Patient-specifi c iPSCs are being used in human neurodegenerative disease modeling and drug screening. Furthermore, with the development of somatic direct reprogramming or lineage reprogramming technique, a more effective approach for regenerative medicine could become a complement for iPSCs.
Cell Differentiation
;
Cell Lineage
;
Cell Transdifferentiation
;
Cellular Reprogramming
;
drug effects
;
Embryonic Stem Cells
;
cytology
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
transplantation
;
Neural Stem Cells
;
cytology
;
transplantation
;
Neurodegenerative Diseases
;
therapy
;
Regenerative Medicine
;
Transcription Factors
;
genetics
;
metabolism
5.Compound screening platform using human induced pluripotent stem cells to identify small molecules that promote chondrogenesis.
Sheng-Lian YANG ; Erica HARNISH ; Thomas LEEUW ; Uwe DIETZ ; Erika BATCHELDER ; Paul S WRIGHT ; Jane PEPPARD ; Paul AUGUST ; Cecile VOLLE-CHALLIER ; Francoise BONO ; Jean-Marc HERBERT ; Juan Carlos IZPISUA BELMONTE
Protein & Cell 2012;3(12):934-942
Articular cartilage, which is mainly composed of collagen II, enables smooth skeletal movement. Degeneration of collagen II can be caused by various events, such as injury, but degeneration especially increases over the course of normal aging. Unfortunately, the body does not fully repair itself from this type of degeneration, resulting in impaired movement. Microfracture, an articular cartilage repair surgical technique, has been commonly used in the clinic to induce the repair of tissue at damage sites. Mesenchymal stem cells (MSC) have also been used as cell therapy to repair degenerated cartilage. However, the therapeutic outcomes of all these techniques vary in different patients depending on their age, health, lesion size and the extent of damage to the cartilage. The repairing tissues either form fibrocartilage or go into a hypertrophic stage, both of which do not reproduce the equivalent functionality of endogenous hyaline cartilage. One of the reasons for this is inefficient chondrogenesis by endogenous and exogenous MSC. Drugs that promote chondrogenesis could be used to induce self-repair of damaged cartilage as a non-invasive approach alone, or combined with other techniques to greatly assist the therapeutic outcomes. The recent development of human induced pluripotent stem cell (iPSCs), which are able to self-renew and differentiate into multiple cell types, provides a potentially valuable cell resource for drug screening in a "more relevant" cell type. Here we report a screening platform using human iPSCs in a multi-well plate format to identify compounds that could promote chondrogenesis.
Cell Differentiation
;
drug effects
;
Chondrocytes
;
cytology
;
drug effects
;
metabolism
;
Chondrogenesis
;
drug effects
;
Drug Evaluation, Preclinical
;
methods
;
Genes, Reporter
;
genetics
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
drug effects
;
metabolism
;
Keratinocytes
;
cytology
;
drug effects
;
metabolism
;
Luciferases
;
genetics
;
Peptides
;
chemical synthesis
;
metabolism
;
Reproducibility of Results
;
Small Molecule Libraries
;
pharmacology
6.Non-viral iPSCs: a safe way for therapy?
Weiqi ZHANG ; Di GUAN ; Jing QU ; Weizhou ZHANG ; Guang-Hui LIU
Protein & Cell 2012;3(4):241-245
Ascorbic Acid
;
chemistry
;
pharmacology
;
Cellular Reprogramming
;
Genetic Vectors
;
genetics
;
metabolism
;
Histone Deacetylases
;
genetics
;
metabolism
;
Humans
;
Induced Pluripotent Stem Cells
;
cytology
;
drug effects
;
Protein Kinase Inhibitors
;
chemistry
;
pharmacology
;
RNA, Small Interfering
;
metabolism
7.Transient folate deprivation in combination with small-molecule compounds facilitates the generation of somatic cell-derived pluripotent stem cells in mice.
Wen-tao HU ; Qiu-yue YAN ; Yu FANG ; Zhan-dong QIU ; Su-ming ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(2):151-156
Induced pluripotent stem cells (iPSCs) can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for the extra-embryonic tissues. This iPSC technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large numbers of disease-specific cells for biomedical research. However, the low efficiency of reprogramming and genomic integration of oncogenes and viral vectors limit the potential application of iPSCs. Chemical-induced reprogramming offers a novel approach to generating iPSCs. In this study, a new combination of small-molecule compounds (SMs) (sodium butyrate, A-83-01, CHIR99021, Y-27632) under conditions of transient folate deprivation was used to generate iPSC. It was found that transient folate deprivation combined with SMs was sufficient to permit reprogramming from mouse embryonic fibroblasts (MEFs) in the presence of transcription factors, Oct4 and Klf4, within 25 days, replacing Sox2 and c-Myc, and accelerated the generation of mouse iPSCs. The resulting cell lines resembled mouse embryonic stem (ES) cells with respect to proliferation rate, morphology, pluripotency-associated markers and gene expressions. Deprivation of folic acid, combined with treating MEFs with SMs, can improve the inducing efficiency of iPSCs and reduce their carcinogenicity and the use of exogenous reprogramming factors.
Amides
;
pharmacology
;
Animals
;
Butyric Acid
;
pharmacology
;
Cell Differentiation
;
drug effects
;
Cell Line
;
Cell Proliferation
;
drug effects
;
Extraembryonic Membranes
;
cytology
;
drug effects
;
Folic Acid
;
pharmacology
;
Induced Pluripotent Stem Cells
;
cytology
;
drug effects
;
Kruppel-Like Transcription Factors
;
metabolism
;
Mice
;
Octamer Transcription Factor-3
;
metabolism
;
Proto-Oncogene Proteins c-myc
;
metabolism
;
Pyrazoles
;
pharmacology
;
Pyridines
;
pharmacology
;
Pyrimidines
;
pharmacology
;
SOXB1 Transcription Factors
;
metabolism
;
Thiocarbamates
;
pharmacology
;
Thiosemicarbazones