1.Mitochondrial and DNA damage in bovine somatic cell nuclear transfer embryos.
In Sun HWANG ; Hyo Kyung BAE ; Hee Tae CHEONG
Journal of Veterinary Science 2013;14(3):235-240
The generation of reactive oxygen species (ROS) and subsequent mitochondrial and DNA damage in bovine somatic cell nuclear transfer (SCNT) embryos were examined. Bovine enucleated oocytes were electrofused with donor cells and then activated by a combination of Ca-ionophore and 6-dimethylaminopurine culture. The H2O2 and .OH radical levels, mitochondrial morphology and membrane potential (DeltaPsi), and DNA fragmentation of SCNT and in vitro fertilized (IVF) embryos at the zygote stage were analyzed. The H2O2 (35.6 +/- 1.1 pixels/embryo) and .OH radical levels (44.6 +/- 1.2 pixels/embryo) of SCNT embryos were significantly higher than those of IVF embryos (19.2 +/- 1.5 and 23.8 +/- 1.8 pixels/embryo, respectively, p < 0.05). The mitochondria morphology of SCNT embryos was diffused within the cytoplasm. The DeltaPsi of SCNT embryos was significantly lower (p < 0.05) than that of IVF embryos (0.95 +/- 0.04 vs. 1.21 +/- 0.06, red/green). Moreover, the comet tail length of SCNT embryos was longer than that of IVF embryos (515.5 +/- 26.4 microm vs. 425.6 +/- 25.0 microm, p < 0.05). These results indicate that mitochondrial and DNA damage increased in bovine SCNT embryos, which may have been induced by increased ROS levels.
Animals
;
*Apoptosis
;
Caspase 3/metabolism
;
Cattle
;
Colorimetry/veterinary
;
Comet Assay/veterinary
;
*DNA Damage
;
DNA, Mitochondrial/*genetics/metabolism
;
Embryo Transfer/veterinary
;
Embryo, Mammalian/*cytology/embryology
;
Fertilization in Vitro/veterinary
;
In Situ Nick-End Labeling/veterinary
;
Membrane Potential, Mitochondrial
;
Microscopy, Confocal/veterinary
;
Microscopy, Fluorescence/veterinary
;
Mitochondria/*metabolism
;
Nuclear Transfer Techniques/*veterinary
;
Reactive Oxygen Species/*metabolism
2.Induction of apoptotic lesions in liver and lymphoid tissues and modulation of cytokine mRNA expression by acute exposure to deoxynivalenol in piglets.
Osamu MIKAMI ; Hiroyuki YAMAGUCHI ; Hideo MURATA ; Yasuyuki NAKAJIMA ; Shigeru MIYAZAKI
Journal of Veterinary Science 2010;11(2):107-113
Six 1-month-old piglets were intravenously injected with deoxynivalenol (DON) at the concentration of 1 mg/kg body weight, with three pigs each necropsied at 6 and 24 h post-injection (PI) for investigation of hepatotoxicity and immunotoxicity with special attention to apoptotic changes and cytokine mRNA expression. Histopathological examination of the DON-injected pigs revealed systemic apoptosis of lymphocytes in lymphoid tissues and hepatocytes. Apoptosis of lymphocytes and hepatocytes was confirmed by the TdT-mediated dUTP-biotin nick end-labeling (TUNEL) method and immunohistochemical staining against single-stranded DNA and cleaved caspase-3. The number of TUNEL-positive cells in the thymus and Peyer's patches of the ileum was increased at 24 h PI compared to 6 h PI, but the peak was at 6 h PI in the liver. The mRNA expression of interleukin (IL)-1beta, IL-6, IL-18, and tumor necrosis factor (TNF)-alpha in the spleen, thymus and mesenteric lymph nodes were determined by semi-quantitative RT-PCR, and elevated expression of IL-1beta mRNA at 6 h PI and a decrease of IL-18 mRNA at 24 h PI were observed in the spleen. IL-1beta and IL-6 mRNA expressions increased significantly at 6 h PI in the thymus, but TNF-alpha decreased at 6 h PI in the mesenteric lymph nodes. These results show the apoptosis of hepatocytes suggesting the hepatotoxic potential of DON, in addition to an immunotoxic effect on the modulation of proinflammatory cytokine genes in lymphoid organs with extensive apoptosis of lymphocytes induced by acute exposure to DON in pigs.
Animals
;
Apoptosis/*drug effects/immunology
;
Cytokines/*biosynthesis/genetics
;
Gene Expression Regulation/drug effects
;
Histocytochemistry/veterinary
;
In Situ Nick-End Labeling/veterinary
;
Liver/*drug effects/immunology
;
Lymphoid Tissue/*drug effects/immunology
;
RNA, Messenger/*biosynthesis/genetics/immunology
;
Reverse Transcriptase Polymerase Chain Reaction/veterinary
;
Specific Pathogen-Free Organisms
;
Swine/*immunology
;
Trichothecenes/*toxicity
3.Apoptosis induced in vivo by new type gosling viral enteritis virus.
Shun CHEN ; Anchun CHENG ; Mingshu WANG ; Dekang ZHU ; Renyong JIA ; Qihui LUO ; Hengmin CUI ; Yi ZHOU ; Yin WANG ; Zhiwen XU ; Zhengli CHEN ; Xiaoyue CHEN ; Xiaoyu WANG
Journal of Veterinary Science 2011;12(4):333-339
In this study, apoptosis was induced by new type gosling viral enteritis virus (NGVEV) in experimentally infected goslings is reported in detail for the first time. After 3-day-old goslings were orally inoculated with a NGVEV-CN strain suspension, the time course of NGVEV effects on apoptotic morphological changes of the internal tissues was evaluated. These changes were observed by histological analysis with light microscopy and ultrastructural analysis with transmission electron microscopy. DNA fragmentation was assessed with a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and DNA ladder analysis. A series of characteristic apoptotic morphological changes including chromatin condensation and margination, cytoplasmic shrinkage, plasma membrane blebbing, and formation of apoptotic bodies were noted. Apoptosis was readily observed in the lymphoid and gastrointestinal organs, and sporadically occurred in other organs after 3 days post-infection (PI). The presence and quantity of TUNEL-positive cells increased with infection time until 9 days PI. DNA extracted from the NGVEV-infected gosling cells displayed characteristic 180~200 bp ladders. Apoptotic cells were ubiquitously distributed, especially among lymphocytes, macrophages, monocytes, and epithelial and intestinal cells. Necrosis was subsequently detected during the late NGVEV-infection phase, which was characterized by cell swelling, plasma membrane collapse, and rapidly lysis. Our results suggested that apoptosis may play an important role in the pathogenesis of NGVE disease.
*Adenoviridae/classification/pathogenicity
;
Adenoviridae Infections/pathology/*veterinary/virology
;
Animals
;
*Anseriformes
;
*Apoptosis
;
Bird Diseases/*virology
;
DNA Fragmentation
;
Enteritis/*veterinary/virology
;
Epithelial Cells/cytology/virology
;
In Situ Nick-End Labeling
;
Intestines/cytology/virology
;
Leukocytes/cytology/virology
;
Lymphoid Tissue/cytology/virology
;
Macrophages
;
Microscopy, Electron, Transmission