1.Development of Enzyme-Linked Immunosorbent Assays Using 2 Truncated ORF2 Proteins for Detection of IgG Antibodies Against Hepatitis E Virus.
Reza TAHERKHANI ; Manoochehr MAKVANDI ; Fatemeh FARSHADPOUR
Annals of Laboratory Medicine 2014;34(2):118-126
BACKGROUND: Without appropriate culture systems for hepatitis E virus (HEV), sufficient natural viral proteins are difficult to generate for use in serological tests. Therefore, it is important to produce large amounts of HEV recombinant proteins in an economical way. The present study developed ELISAs using 2 truncated forms of the HEV open reading frame (ORF) 2 protein in order to detect anti-HEV IgG in serum samples. METHODS: Two truncated forms of the ORF2 protein were expressed in Escherichia coli and were purified by Ni2+-chelate-affinity chromatography (Qiagen, Germany). Two ELISAs were developed using these proteins and were compared with DIA.PRO HEV IgG ELISA kit (DIA.PRO. Italy) in 220 serum samples. RESULTS: High yields of the target proteins were obtained through codon optimization. The concentration and purity of the proteins were improved with Amicon filters (EMD Millipore, USA). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting analysis of the resultant proteins showed a protein band of approximately 60 kDa corresponding to ORF2.1 (amino acids 112-660) and a protein band of approximately 55 kDa corresponding to ORF2.2 (amino acids 112-607). Positive agreement, negative agreement, and concordance of the 2 in-house ELISAs compared with DIA.PRO HEV IgG ELISA kit were 87%, 99.5%, and 98.1%, respectively (kappa=0.899, P=0.625). CONCLUSIONS: The newly developed ELISAs are useful for detecting anti-HEV IgG in serum samples and are highly concordant with DIA.PRO HEV IgG ELISA kit.
Amino Acid Sequence
;
Antibodies/*blood
;
*Enzyme-Linked Immunosorbent Assay
;
Escherichia coli/metabolism
;
Hepatitis E virus/*metabolism
;
Humans
;
Immunoglobulin G/*blood
;
Molecular Sequence Data
;
Recombinant Proteins/biosynthesis/immunology/isolation & purification
;
Sequence Alignment
;
Viral Proteins/chemistry/*immunology/metabolism
2.Allergenic Characterization of 27-kDa Glycoprotein, a Novel Heat Stable Allergen, from the Pupa of Silkworm, Bombyx mori.
Kyoung Yong JEONG ; Mina SON ; June Yong LEE ; Kyung Hee PARK ; Jae Hyun LEE ; Jung Won PARK
Journal of Korean Medical Science 2016;31(1):18-24
Boiled silkworm pupa is a traditional food in Asia, and patients with silkworm pupa food allergy are common in these regions. Still now only one allergen from silkworm, arginine kinase, has been identified. The purpose of this study was to identify novel food allergens in silkworm pupa by analyzing a protein extract after heat treatment. Heat treated extracts were examined by proteomic analysis. A 27-kDa glycoprotein was identified, expressed in Escherichia coli, and purified. IgE reactivity of the recombinant protein was investigated by ELISA. High molecular weight proteins (above 100 kDa) elicited increased IgE binding after heat treatment compared to that before heat treatment. The molecular identities of these proteins, however, could not be determined. IgE reactivity toward a 27-kDa glycoprotein was also increased after heating the protein extract. The recombinant protein was recognized by IgE antibodies from allergic subjects (33.3%). Glycation or aggregation of protein by heating may create new IgE binding epitopes. Heat stable allergens are shown to be important in silkworm allergy. Sensitization to the 27-kDa glycoprotein from silkworm may contribute to elevation of IgE to silkworm.
Adolescent
;
Adult
;
Allergens/*chemistry/*immunology
;
Amino Acid Sequence
;
Animals
;
Bombyx/*chemistry/genetics/growth & development/*immunology
;
Epitopes/immunology
;
Female
;
Food Hypersensitivity/etiology
;
Glycoproteins/*chemistry/genetics/*immunology
;
Hot Temperature
;
Humans
;
Immunoglobulin E/immunology
;
Male
;
Molecular Sequence Data
;
Molecular Weight
;
Proteomics
;
Pupa/chemistry/immunology
;
Recombinant Proteins/biosynthesis/chemistry/immunology
;
Sequence Alignment
3.Airway Inflammation and Allergen Specific IgE Production May Persist Longer Than Airway Hyperresponsiveness in Mice.
Yoon Seok CHANG ; Yoon Keun KIM ; Tae Bum KIM ; Hye Ryun KANG ; Sun Sin KIM ; Joon Woo BAHN ; Kyung Up MIN ; You Young KIM ; Sang Heon CHO
Journal of Korean Medical Science 2004;19(1):69-73
During the preclinical study of new therapeutic modality, we evaluate whether the treatment can reverse the established asthma phenotypes in animal model. However, few have reported on the long term persistence of asthma phenotypes upon re-challenge with allergen (secondary challenge) in animal model. We evaluated the persistence of asthma phenotypes by secondary challenge at different times in previously challenged murine asthma model. BALB/c mice sensitized by intraperitoneal injections of 20 microgram of ovalbumin and 1 mg of alum on days 1 and 14 were challenged initially by the inhalation of 1% ovalbumin for 30 min on days 21, 22, and 23. Each group of mice was rechallenged at 5, 7, 9, or 12 weeks after the initial challenge. Airway hyperresponsiveness, BAL fluid, airway histology and serum ovalbumin-specific IgE level were evaluated. Airway eosinophilia, airway inflammation and serum ovalbumin-specific IgE production persisted upon secondary allergen challenges at least 12 weeks after the initial challenge. However, airway hyperresponsiveness persisted only until mice were rechallenged 7 weeks after the initial challenge. Airway inflammation and allergen specific IgE production may persist longer than airway hyperresponsiveness in a mouse asthma model of secondary allergen challenge.
Allergens
;
Animals
;
Asthma/metabolism/*pathology
;
Bronchial Hyperreactivity/*diagnosis
;
Bronchoalveolar Lavage
;
Bronchoalveolar Lavage Fluid
;
Female
;
Immunoglobulin E/*biosynthesis/chemistry
;
*Inflammation
;
Lung/pathology
;
Mice
;
Mice, Inbred BALB C
;
Ovalbumin/pharmacology
;
Phenotype
;
Respiratory Hypersensitivity/*diagnosis
;
Respiratory System/pathology
;
Support, Non-U.S. Gov't
;
Time Factors