1.Evaluation of safety and immunogenicity of hepatitis E vaccine in maintenance hemodialysis patients.
Xue Lian WANG ; Yan Ting LI ; Xin Jing MA ; Yi Sheng LING ; Ting WU ; Jian Jun NIU
Chinese Journal of Preventive Medicine 2022;56(4):464-467
Objective: To evaluate the safety and immunogenicity of hepatitis E vaccine(HEV)in Maintenance hemodialysis(MHD)patients. Methods: Based on an open-labeled controlled trial, from May 2016 to March 2018, 35 eligible MHD patients were recruited in the Hemodialysis Center of Zhongshan Hospital Affiliated to Xiamen University as the experimental group, and 70 MHD patients with matched age, gender and underlying diseases as the control group. The experimental group received HEV at 0, 1 and 6 months according to the standard vaccination procedures, while the control group received routine diagnosis and treatment without vaccine and placebo injection to observe the safety and immunogenicity of the vaccine. The safety of vaccine in MHD population was evaluated by the incidence of adverse reactions/events in the experimental and control groups. The immunogenicity of HEV in MHD patients was evaluated by comparing the data from the phase Ⅲ clinical trial. Results: The overall incidence of adverse reactions/events was 17.1% (18/105), and there were no grade 3-4 adverse reactions/events related to vaccination. In the experimental group, the incidence of local adverse reactions/events was 20.0% (7/35), and the incidence of systemic adverse reactions/events was 17.1% (6/35).There was no significant difference in the incidence of systemic adverse reactions/events between the experimental group and the control group (P>0.05). There were 23 patients receiving 3 doses with the standard schedule. The positive rate of HEV-IgG antibody was 100% and the GMC was 14.47(95%CI:13.14-15.80) WU/ml, which showed no significant difference compared with the 46 patients in Phase Ⅲ clinical trial (t=-1.04, P>0.05). Conclusion: Recombinant HEV has good safety and immunogenicity in MHD patients.
Clinical Trials, Phase III as Topic
;
Female
;
Hepatitis E
;
Humans
;
Immunogenicity, Vaccine
;
Immunoglobulin G
;
Male
;
Renal Dialysis
;
Viral Hepatitis Vaccines/adverse effects*
2.Early assessment of the safety and immunogenicity of a third dose (booster) of COVID-19 immunization in Chinese adults.
Yuntao ZHANG ; Yunkai YANG ; Niu QIAO ; Xuewei WANG ; Ling DING ; Xiujuan ZHU ; Yu LIANG ; Zibo HAN ; Feng LIU ; Xinxin ZHANG ; Xiaoming YANG
Frontiers of Medicine 2022;16(1):93-101
Inducing durable and effective immunity against severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) via vaccination is essential to combat the current pandemic of coronavirus disease 2019 (COVID-19). It has been noticed that the strength of anti-COVID-19 vaccination-induced immunity fades over time, which calls for an additional vaccination regime, as known as booster immunization, to restore immunity among previously vaccinated populations. Here we report a pilot open-label trial of a third dose of BBIBP-CorV, an inactivated SARS-CoV-2 vaccine (Vero cell), on 136 participants aged between 18 to 63 years. Safety and immunogenicity in terms of neutralizing antibody titers and cytokine/chemokine responses were analyzed as the main endpoint until day 28. While systemic reactogenicity was either absent or mild, SARS-CoV-2-specific neutralizing antibody titers rapidly arose in all participants within 4 weeks, surpassing the peak antibody titers elicited by the initial two-dose immunization regime. Broad increases of cellular immunity-associated cytokines and chemokines were also detected in the majority of participants after the third vaccination. Furthermore, in an exploratory study, a newly developed recombinant protein vaccine, NVSI-06-08 (CHO Cells), was found to be safe and even more effective than BBIBP-CorV in eliciting humoral immune responses in BBIBP-CorV-primed individuals. Together, these results indicate that a third immunization schedule with either homologous or heterologous vaccine showed favorable safety profiles and restored potent SARS-CoV-2-specific immunity, providing support for further trials of booster vaccination in larger populations.
Adolescent
;
Adult
;
Antibodies, Neutralizing
;
Antibodies, Viral
;
COVID-19/prevention & control*
;
COVID-19 Vaccines/adverse effects*
;
China
;
Humans
;
Immunogenicity, Vaccine
;
Middle Aged
;
SARS-CoV-2
;
Vaccination
;
Young Adult
3.Clinical efficacy and long-term immunogenicity of an early triple dose regimen of SARS-CoV-2 mRNA vaccination in cancer patients.
Matilda Xinwei LEE ; Siyu PENG ; Ainsley Ryan Yan Bin LEE ; Shi Yin WONG ; Ryan Yong Kiat TAY ; Jiaqi LI ; Areeba TARIQ ; Claire Xin Yi GOH ; Ying Kiat TAN ; Benjamin Kye Jyn TAN ; Chong Boon TEO ; Esther CHAN ; Melissa OOI ; Wee Joo CHNG ; Cheng Ean CHEE ; Carol L F HO ; Robert John WALSH ; Maggie WONG ; Yan SU ; Lezhava ALEXANDER ; Sunil Kumar SETHI ; Shaun Shi Yan TAN ; Yiong Huak CHAN ; Kelvin Bryan TAN ; Soo Chin LEE ; Louis Yi Ann CHAI ; Raghav SUNDAR
Annals of the Academy of Medicine, Singapore 2023;52(1):8-16
INTRODUCTION:
Three doses of SARS-CoV-2 mRNA vaccines have been recommended for cancer patients to reduce the risk of severe disease. Anti-neoplastic treatment, such as chemotherapy, may affect long-term vaccine immunogenicity.
METHOD:
Patients with solid or haematological cancer were recruited from 2 hospitals between July 2021 and March 2022. Humoral response was evaluated using GenScript cPASS surrogate virus neutralisation assays. Clinical outcomes were obtained from medical records and national mandatory-reporting databases.
RESULTS:
A total of 273 patients were recruited, with 40 having haematological malignancies and the rest solid tumours. Among the participants, 204 (74.7%) were receiving active cancer therapy, including 98 (35.9%) undergoing systemic chemotherapy and the rest targeted therapy or immunotherapy. All patients were seronegative at baseline. Seroconversion rates after receiving 1, 2 and 3 doses of SARS-CoV-2 mRNA vaccination were 35.2%, 79.4% and 92.4%, respectively. After 3 doses, patients on active treatment for haematological malignancies had lower antibodies (57.3%±46.2) when compared to patients on immunotherapy (94.1%±9.56, P<0.05) and chemotherapy (92.8%±18.1, P<0.05). SARS-CoV-2 infection was reported in 77 (28.2%) patients, of which 18 were severe. No patient receiving a third dose within 90 days of the second dose experienced severe infection.
CONCLUSION
This study demonstrates the benefit of early administration of the third dose among cancer patients.
Humans
;
SARS-CoV-2
;
COVID-19/prevention & control*
;
Treatment Outcome
;
Neoplasms/drug therapy*
;
Hematologic Neoplasms
;
Vaccination
;
RNA, Messenger
;
Antibodies, Viral
;
Immunogenicity, Vaccine
4.Efficacy, Immunogenicity and Safety of a Human Rotavirus Vaccine RIX4414 in Singaporean Infants.
Kong Boo PHUA ; Fong Seng LIM ; Seng Hock QUAK ; Bee Wah LEE ; Yee Leong TEOH ; Pemmaraju V SURYAKIRAN ; Htay Htay HAN ; Hans L BOCK
Annals of the Academy of Medicine, Singapore 2016;45(2):44-50
INTRODUCTIONThis was the first study conducted to evaluate the efficacy of 2 oral doses of the human rotavirus vaccine, RIX4414 in Singaporean infants during the first 3 years of life.
MATERIALS AND METHODSHealthy infants, 11 to 17 weeks of age were enrolled in this randomised (1:1), double-blinded, placebo-controlled study to receive 2 oral doses of RIX4414 vaccine/placebo following a 0-, 1-month schedule. Vaccine efficacy against severe rotavirus (RV) gastroenteritis (Vesikari score ≥11) caused by wild-type RV strains from a period starting from 2 weeks post-Dose 2 until 2 and 3 years of age was calculated with 95% confidence interval (CI). Immunogenicity and safety of the vaccine were also assessed.
RESULTSOf 6542 infants enrolled, 6466 were included in the efficacy analysis and a subset of 100 infants was included in the immunogenicity analysis. Fewer severe RV gastroenteritis episodes were reported in the RIX4414 group when compared to placebo at both 2 and 3 year follow-up periods. Vaccine efficacy against severe RV gastroenteritis at the respective time points were 93.8% (95% CI, 59.9 to 99.9) and 95.2% (95% CI, 70.5 to 99.9). One to 2 months post-Dose 2 of RIX4414, 97.5% (95% CI, 86.8 to 99.9) of infants seroconverted for anti-RV IgA antibodies. The number of serious adverse events recorded from Dose 1 until 3 years of age was similar in both groups.
CONCLUSIONTwo oral doses of RIX4414 vaccine was immunogenic and provided high level of protection against severe RV gastroenteritis in Singaporean children, during the first 3 years of life when the disease burden is highest.
Antibodies, Viral ; immunology ; Double-Blind Method ; Female ; Gastroenteritis ; prevention & control ; virology ; Humans ; Immunogenicity, Vaccine ; Immunoglobulin A ; immunology ; Infant ; Male ; Rotavirus ; immunology ; Rotavirus Infections ; prevention & control ; Rotavirus Vaccines ; immunology ; therapeutic use ; Singapore ; Treatment Outcome ; Vaccines, Attenuated ; immunology ; therapeutic use
5.Comparson of the immunogenicity of genotypeⅠJapanese encephalitis virus subunit vaccine candidate antigens.
Ruiming YU ; Zhancheng TIAN ; Shandian GAO ; Junzheng DU ; Guangyuan LIU ; Jianxun LUO ; Hong YIN
Chinese Journal of Biotechnology 2020;36(7):1314-1322
To screen the best genotypeⅠJapanese encephalitis virus subunit vaccine candidate antigens, the prMEIII gene, the polytope gene and the prMEIII-polytope fusion gene of the GenotypeⅠJapanese encephalitis virus GS strain were cloned into prokaryotic expression vector pET-30a. The recombinant proteins were obtained after the induction and purification. The prepared recombinant proteins were immunized to mice, and the immunogenicity of the subunit vaccine candidate antigens was evaluated through monitoring the humoral immune response by ELISA, detecting the neutralizing antibody titer by plaque reduction neutralization test, and testing the cell-mediated immune response by lymphocyte proliferation assay and cytokine profiling. The recombinant proteins with the molecular weights of 35 (prMEIII), 28 (polytope antigen) and 57 kDa (prMEIII-polytope) induced strong humoral and cellular immune responses in mice. Compared with prMEIII-polytope and polytope proteins, the prMEIII protein induced a significant expression of IL-2 and IFN-γ (P<0.05) and the significant lymphoproliferation of splenocytes (P<0.05). The neutralizing antibody titer induced by the prMEIII protein was close to that induced by the commercial attenuated vaccine SA14-14-2 (P>0.05). The study suggests that the prMEIII protein can be used for the development of the Japanese encephalitis virus subunit vaccine.
Animals
;
Antibodies, Viral
;
blood
;
Antigens, Viral
;
immunology
;
Encephalitis Virus, Japanese
;
immunology
;
Encephalitis, Japanese
;
immunology
;
prevention & control
;
Immunogenicity, Vaccine
;
Mice
;
Mice, Inbred BALB C
;
Vaccines, Subunit
;
immunology
;
Viral Vaccines
;
immunology
6.Improved immunogenicity of Newcastle disease virus inactivated vaccine following DNA vaccination using Newcastle disease virus hemagglutinin-neuraminidase and fusion protein genes.
Masoumeh FIROUZAMANDI ; Hassan MOEINI ; Davood HOSSEINI ; Mohd Hair BEJO ; Abdul Rahman OMAR ; Parvaneh MEHRBOD ; Aini IDERIS
Journal of Veterinary Science 2016;17(1):21-26
The present study describes the development of DNA vaccines using the hemagglutinin-neuraminidase (HN) and fusion (F) genes from AF2240 Newcastle disease virus strain, namely pIRES/HN, pIRES/F and pIRES-F/HN. Transient expression analysis of the constructs in Vero cells revealed the successful expression of gene inserts in vitro. Moreover, in vivo experiments showed that single vaccination with the constructed plasmid DNA (pDNA) followed by a boost with inactivated vaccine induced a significant difference in enzyme-linked immunosorbent assay antibody levels (p < 0.05) elicited by either pIRES/F, pIRES/F+ pIRES/HN or pIRES-F/HN at one week after the booster in specific pathogen free chickens when compared with the inactivated vaccine alone. Taken together, these results indicated that recombinant pDNA could be used to increase the efficacy of the inactivated vaccine immunization procedure.
Animals
;
Antibodies, Viral/blood
;
Cercopithecus aethiops
;
Chickens
;
*HN Protein/genetics/immunology
;
Immunogenicity, Vaccine/*immunology
;
Newcastle Disease/immunology
;
Newcastle disease virus/enzymology/*genetics/immunology
;
Specific Pathogen-Free Organisms
;
Vaccines, DNA/genetics/*immunology
;
Vaccines, Inactivated/immunology
;
Vero Cells
;
*Viral Fusion Proteins/genetics/immunology
;
Viral Vaccines/genetics/*immunology/*standards