1.Network pharmacology and molecular docking explore mechanism of Croci Stigma in treating immune checkpoint inhibitor-associated myocarditis.
Jing YAN ; Qing-Qing CAI ; Yu LI ; Hua-Min ZHANG ; Fang-Bo ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2515-2525
This study investigated the mechanism of Croci Stigma in treating immune checkpoint inhibitor(ICI)-associated myocarditis based on network pharmacology and molecular docking. Network pharmacology was employed to screen the active ingredients and molecular targets of Croci Stigma in treating ICI-associated myocarditis. The "drug-ingredient-target-disease" network and protein-protein interaction network were constructed to screen the key ingredients and core targets. Gene Ontology functional enrichment analysis showed that the mechanism was related to the regulation of inflammation and apoptosis. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the treatment was related to the advanced glycation end product-receptor for advanced glycation end products(AGE-RAGE) signaling pathway. Molecular docking result showed that crocins had close associations with RAC-alpha serine/threonine-protein kinase 1(AKT1), signal transducer and activator of transcription 3, and matrix metalloproteinase 9. Crocins were then selected as the therapeutic drug. The mouse model of ICI-associated myocarditis was established by subcutaneous injection of porcine cardiac myosin combined with intraperitoneal injection of pembrolizumab. The results suggested that Croci Stigma reduced the spleen index but had no effect on the heart index. The electrocardiogram showed that Croci Stigma increased the heart rate and shortened PR and QRS intervals. Echocardiographic data indicated that Croci Stigma increased the left ventricular stroke volume, cardiac output, ejection fraction, and fractional shortening. Hematoxylin-eosin and Masson staining results showed that Croci Stigma decreased the number of inflammatory cells infiltrating in the myocardium and alleviated myocardial fibrosis. Enzyme-linked immunosorbent assay results showed that Croci Stigma decreased the serum levels of inflammatory cytokines including tumor necrosis factor-alpha, interleukin-6, interleukin-12, and regulated on activation, normal T-cell expressed and secreted and lowered the levels of creatine kinase and creatine kinase isoenzyme MB. Biochemical data suggested that Croci Stigma inhibited the activities of superoxide dismutase and lactate dehydrogenase. Western blot result showed that Croci Stigma regulated the expression of myocardial AKT. The findings demonstrate that Croci Stigma may regulate AKT expression to effectively protect the cardiac tissue from ICI-associated myocarditis through antagonizing immune responses and inflammation, inhibiting oxidative stress, alleviating cardiac fibrosis, relieving cardiac block, and improving the cardiac function.
Animals
;
Molecular Docking Simulation
;
Myocarditis/metabolism*
;
Immune Checkpoint Inhibitors/adverse effects*
;
Mice
;
Network Pharmacology
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Humans
;
Protein Interaction Maps/drug effects*
2.Immune Checkpoints Mediate Tumor Immune Regulation through Metabolic Pathways.
Weiguang DU ; Xiyang TANG ; Yulong ZHOU ; Mengchao LI ; Ze JIN ; Jiaqi DOU ; Jinbo ZHAO
Chinese Journal of Lung Cancer 2025;28(3):213-220
Immune checkpoints include a series of receptor-ligand pairs that play a key role in the proliferation, activation, and immune regulatory responses of immune cells. Although immune checkpoint inhibitors (ICIs), such as programmed death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have achieved good therapeutic effects in clinical practice, some patients still experience ineffective treatment and immune resistance. A large amount of evidence has shown that immune checkpoint proteins are related to cell metabolism during immune regulation. On the one hand, immune checkpoints connect to alter the metabolic reprogramming of tumor cells to compete for nutrients required by immune cells. On the other hand, immune checkpoints regulate the metabolic pathways of immune cells, such as phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) to affect the activation of immune cells. Based on a review of the literature, this article reviews the mechanisms by which PD-1, CTLA-4, T cell immunoreceptor with Ig and ITIM domains (TIGIT), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), cluster of differentiation 47 (CD47), and indoleamine 2,3-dioxygenase 1 (IDO1) regulate cell metabolic reprogramming, and looks forward to whether targeting the ligand-receptor pairs of immune checkpoints in a "dual regulation" manner and inhibiting metabolic pathways can effectively solve the problem of tumor immune resistance.
.
Humans
;
Neoplasms/genetics*
;
Metabolic Networks and Pathways/immunology*
;
Animals
;
Immune Checkpoint Inhibitors/pharmacology*
3.Neoadjuvant immune checkpoint inhibitor therapy and chemotherapy improve pulmonary ventilation and diffusion function in patients with lung cancer.
Wu'an BAO ; Xia ZHOU ; Feiying GU ; Juan LIN ; Bin LI
Journal of Zhejiang University. Medical sciences 2023;52(5):588-593
OBJECTIVES:
To investigate changes of pulmonary ventilation function and diffusion function in lung cancer patients after neoadjuvant immune checkpoint inhibitors (ICIs) therapy combined with chemotherapy treatment.
METHODS:
Patients with newly diagnosed lung cancer (Ⅱa-Ⅲb) admitted to Zhejiang Cancer Hospital from October 2021 to July 2022, who received ICIs combined with chemotherapy for more than two courses were enrolled. Patients underwent pulmonary ventilation function and diffusion function assessments before and after treatment. The demographic information, sizes and locations of cancer lesions, doses and duration of ICIs used, pulmonary function results before and after treatment, and the tumor regression were documented. The changes of pulmonary function parameters before and after the treatment were analyzed with paired t test and Wilcoxon rank-sum test. The factors influencing the pulmonary function changes were analyzed by multiple linear Lasso regression and ridge regression.
RESULTS:
Among the 52 patients, 50 cases were males (96.15%) and 43 cases were squamous carcinoma (82.69%). The medium age of the patients was 67 years. After neoadjuvant therapy, 36 patients (69.23%) showed remission of tumor lesions. After treatment, the parameters of pulmonary ventilation inspiratory vital capacity (IVC) and the area under the expiratory flow-volume curve (AREAex), and the parameter of pulmonary diffusion total lung capacity increased compared with the baseline (all P<0.05). Forced vital capacity (FVC) and forced expiratory volume in first second (FEV1) also showed an increasing trend. Multivariate linear Lasso regression and ridge regression showed that baseline IVC had a significant negative effect on IVC improvement (Beta=-0.435, t=-2.968, P<0.01), baseline TLC had a significant negative effect on the improvement of TLC (Beta=-0.266, t=-2.474, P<0.05), and the remission of obstructive pneumonia favored the improvement of TLC (Beta=0.308, t=2.443, P<0.05).
CONCLUSIONS
After ICIs neoadjuvant treatment combined with chemotherapy, the lung ventilation and diffusion function can be improved in lung cancer patients, particularly for those with reduced baseline ventilation and diffusion function.
Male
;
Humans
;
Aged
;
Female
;
Lung Neoplasms/drug therapy*
;
Neoadjuvant Therapy
;
Immune Checkpoint Inhibitors/pharmacology*
;
Lung
;
Pulmonary Ventilation
4.Metabolic interventions combined with CTLA-4 and PD-1/PD-L1 blockade for the treatment of tumors: mechanisms and strategies.
Liming LIAO ; Huilin XU ; Yuhan ZHAO ; Xiaofeng ZHENG
Frontiers of Medicine 2023;17(5):805-822
Immunotherapies based on immune checkpoint blockade (ICB) have significantly improved patient outcomes and offered new approaches to cancer therapy over the past decade. To date, immune checkpoint inhibitors (ICIs) of CTLA-4 and PD-1/PD-L1 represent the main class of immunotherapy. Blockade of CTLA-4 and PD-1/PD-L1 has shown remarkable efficacy in several specific types of cancers, however, a large subset of refractory patients presents poor responsiveness to ICB therapy; and the underlying mechanism remains elusive. Recently, numerous studies have revealed that metabolic reprogramming of tumor cells restrains immune responses by remodeling the tumor microenvironment (TME) with various products of metabolism, and combination therapies involving metabolic inhibitors and ICIs provide new approaches to cancer therapy. Nevertheless, a systematic summary is lacking regarding the manner by which different targetable metabolic pathways regulate immune checkpoints to overcome ICI resistance. Here, we demonstrate the generalized mechanism of targeting cancer metabolism at three crucial immune checkpoints (CTLA-4, PD-1, and PD-L1) to influence ICB therapy and propose potential combined immunotherapeutic strategies co-targeting tumor metabolic pathways and immune checkpoints.
Humans
;
Antibodies, Monoclonal/pharmacology*
;
B7-H1 Antigen/antagonists & inhibitors*
;
CTLA-4 Antigen/antagonists & inhibitors*
;
Immune Checkpoint Inhibitors/pharmacology*
;
Neoplasms/drug therapy*
;
Programmed Cell Death 1 Receptor
;
Tumor Microenvironment

Result Analysis
Print
Save
E-mail