1.Research on motor imagery recognition based on feature fusion and transfer adaptive boosting.
Yuxin ZHANG ; Chenrui ZHANG ; Shihao SUN ; Guizhi XU
Journal of Biomedical Engineering 2025;42(1):9-16
This paper proposes a motor imagery recognition algorithm based on feature fusion and transfer adaptive boosting (TrAdaboost) to address the issue of low accuracy in motor imagery (MI) recognition across subjects, thereby increasing the reliability of MI-based brain-computer interfaces (BCI) for cross-individual use. Using the autoregressive model, power spectral density and discrete wavelet transform, time-frequency domain features of MI can be obtained, while the filter bank common spatial pattern is used to extract spatial domain features, and multi-scale dispersion entropy is employed to extract nonlinear features. The IV-2a dataset from the 4 th International BCI Competition was used for the binary classification task, with the pattern recognition model constructed by combining the improved TrAdaboost integrated learning algorithm with support vector machine (SVM), k nearest neighbor (KNN), and mind evolutionary algorithm-based back propagation (MEA-BP) neural network. The results show that the SVM-based TrAdaboost integrated learning algorithm has the best performance when 30% of the target domain instance data is migrated, with an average classification accuracy of 86.17%, a Kappa value of 0.723 3, and an AUC value of 0.849 8. These results suggest that the algorithm can be used to recognize MI signals across individuals, providing a new way to improve the generalization capability of BCI recognition models.
Brain-Computer Interfaces
;
Humans
;
Support Vector Machine
;
Algorithms
;
Neural Networks, Computer
;
Imagination/physiology*
;
Pattern Recognition, Automated/methods*
;
Electroencephalography
;
Wavelet Analysis
2.Cross-session motor imagery-electroencephalography decoding with Riemannian spatial filtering and domain adaptation.
Lincong PAN ; Xinwei SUN ; Kun WANG ; Yupei CAO ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2025;42(2):272-279
Motor imagery (MI) is a mental process that can be recognized by electroencephalography (EEG) without actual movement. It has significant research value and application potential in the field of brain-computer interface (BCI) technology. To address the challenges posed by the non-stationary nature and low signal-to-noise ratio of MI-EEG signals, this study proposed a Riemannian spatial filtering and domain adaptation (RSFDA) method for improving the accuracy and efficiency of cross-session MI-BCI classification tasks. The approach addressed the issue of inconsistent data distribution between source and target domains through a multi-module collaborative framework, which enhanced the generalization capability of cross-session MI-EEG classification models. Comparative experiments were conducted on three public datasets to evaluate RSFDA against eight existing methods in terms of classification accuracy and computational efficiency. The experimental results demonstrated that RSFDA achieved an average classification accuracy of 79.37%, outperforming the state-of-the-art deep learning method Tensor-CSPNet (76.46%) by 2.91% ( P < 0.01). Furthermore, the proposed method showed significantly lower computational costs, requiring only approximately 3 minutes of average training time compared to Tensor-CSPNet's 25 minutes, representing a reduction of 22 minutes. These findings indicate that the RSFDA method demonstrates superior performance in cross-session MI-EEG classification tasks by effectively balancing accuracy and efficiency. However, its applicability in complex transfer learning scenarios remains to be further investigated.
Electroencephalography/methods*
;
Brain-Computer Interfaces
;
Humans
;
Imagination/physiology*
;
Signal Processing, Computer-Assisted
;
Movement/physiology*
;
Signal-To-Noise Ratio
;
Deep Learning
;
Algorithms
3.Evaluation methods for the rehabilitation efficacy of bidirectional closed-loop motor imagery brain-computer interface active rehabilitation training systems.
He PAN ; Peng DING ; Fan WANG ; Tianwen LI ; Lei ZHAO ; Wenya NAN ; Anmin GONG ; Yunfa FU
Journal of Biomedical Engineering 2025;42(3):431-437
The bidirectional closed-loop motor imagery brain-computer interface (MI-BCI) is an emerging method for active rehabilitation training of motor dysfunction, extensively tested in both laboratory and clinical settings. However, no standardized method for evaluating its rehabilitation efficacy has been established, and relevant literature remains limited. To facilitate the clinical translation of bidirectional closed-loop MI-BCI, this article first introduced its fundamental principles, reviewed the rehabilitation training cycle and methods for evaluating rehabilitation efficacy, and summarized approaches for evaluating system usability, user satisfaction and usage. Finally, the challenges associated with evaluating the rehabilitation efficacy of bidirectional closed-loop MI-BCI were discussed, aiming to promote its broader adoption and standardization in clinical practice.
Brain-Computer Interfaces
;
Humans
;
Imagination/physiology*
;
Imagery, Psychotherapy/methods*
4.Study on speech imagery electroencephalography decoding of Chinese words based on the CAM-Net model.
Xiaolong LIU ; Banghua YANG ; An'an GAN ; Jie ZHANG
Journal of Biomedical Engineering 2025;42(3):473-479
Speech imagery is an emerging brain-computer interface (BCI) paradigm with potential to provide effective communication for individuals with speech impairments. This study designed a Chinese speech imagery paradigm using three clinically relevant words-"Help me", "Sit up" and "Turn over"-and collected electroencephalography (EEG) data from 15 healthy subjects. Based on the data, a Channel Attention Multi-Scale Convolutional Neural Network (CAM-Net) decoding algorithm was proposed, which combined multi-scale temporal convolutions with asymmetric spatial convolutions to extract multidimensional EEG features, and incorporated a channel attention mechanism along with a bidirectional long short-term memory network to perform channel weighting and capture temporal dependencies. Experimental results showed that CAM-Net achieved a classification accuracy of 48.54% in the three-class task, outperforming baseline models such as EEGNet and Deep ConvNet, and reached a highest accuracy of 64.17% in the binary classification between "Sit up" and "Turn over". This work provides a promising approach for future Chinese speech imagery BCI research and applications.
Humans
;
Electroencephalography/methods*
;
Brain-Computer Interfaces
;
Neural Networks, Computer
;
Speech/physiology*
;
Algorithms
;
Male
;
Adult
;
Imagination
5.Motor imagery classification based on dynamic multi-scale convolution and multi-head temporal attention.
Journal of Biomedical Engineering 2025;42(4):678-685
Convolutional neural networks (CNNs) are renowned for their excellent representation learning capabilities and have become a mainstream model for motor imagery based electroencephalogram (MI-EEG) signal classification. However, MI-EEG exhibits strong inter-individual variability, which may lead to a decline in classification performance. To address this issue, this paper proposes a classification model based on dynamic multi-scale CNN and multi-head temporal attention (DMSCMHTA). The model first applies multi-band filtering to the raw MI-EEG signals and inputs the results into the feature extraction module. Then, it uses a dynamic multi-scale CNN to capture temporal features while adjusting attention weights, followed by spatial convolution to extract spatiotemporal feature sequences. Next, the model further optimizes temporal correlations through time dimensionality reduction and a multi-head attention mechanism to generate more discriminative features. Finally, MI classification is completed under the supervision of cross-entropy loss and center loss. Experiments show that the proposed model achieves average accuracies of 80.32% and 90.81% on BCI Competition IV datasets 2a and 2b, respectively. The results indicate that DMSCMHTA can adaptively extract personalized spatiotemporal features and outperforms current mainstream methods.
Electroencephalography/methods*
;
Humans
;
Neural Networks, Computer
;
Brain-Computer Interfaces
;
Attention
;
Signal Processing, Computer-Assisted
;
Imagination/physiology*
;
Algorithms
6.A Personalized Predictor of Motor Imagery Ability Based on Multi-frequency EEG Features.
Mengfan LI ; Qi ZHAO ; Tengyu ZHANG ; Jiahao GE ; Jingyu WANG ; Guizhi XU
Neuroscience Bulletin 2025;41(7):1198-1212
A brain-computer interface (BCI) based on motor imagery (MI) provides additional control pathways by decoding the intentions of the brain. MI ability has great intra-individual variability, and the majority of MI-BCI systems are unable to adapt to this variability, leading to poor training effects. Therefore, prediction of MI ability is needed. In this study, we propose an MI ability predictor based on multi-frequency EEG features. To validate the performance of the predictor, a video-guided paradigm and a traditional MI paradigm are designed, and the predictor is applied to both paradigms. The results demonstrate that all subjects achieved > 85% prediction precision in both applications, with a maximum of 96%. This study indicates that the predictor can accurately predict the individuals' MI ability in different states, provide the scientific basis for personalized training, and enhance the effect of MI-BCI training.
Humans
;
Imagination/physiology*
;
Electroencephalography/methods*
;
Brain-Computer Interfaces
;
Male
;
Female
;
Adult
;
Young Adult
;
Brain/physiology*
;
Movement/physiology*
;
Motor Activity/physiology*
;
Psychomotor Performance/physiology*
7.Three-dimensional convolutional neural network based on spatial-spectral feature pictures learning for decoding motor imagery electroencephalography signal.
Xuejian WU ; Yaqi CHU ; Xingang ZHAO ; Yiwen ZHAO
Journal of Biomedical Engineering 2024;41(6):1145-1152
The brain-computer interface (BCI) based on motor imagery electroencephalography (EEG) shows great potential in neurorehabilitation due to its non-invasive nature and ease of use. However, motor imagery EEG signals have low signal-to-noise ratios and spatiotemporal resolutions, leading to low decoding recognition rates with traditional neural networks. To address this, this paper proposed a three-dimensional (3D) convolutional neural network (CNN) method that learns spatial-frequency feature maps, using Welch method to calculate the power spectrum of EEG frequency bands, converted time-series EEG into a brain topographical map with spatial-frequency information. A 3D network with one-dimensional and two-dimensional convolutional layers was designed to effectively learn these features. Comparative experiments demonstrated that the average decoding recognition rate reached 86.89%, outperforming traditional methods and validating the effectiveness of this approach in motor imagery EEG decoding.
Electroencephalography/methods*
;
Humans
;
Brain-Computer Interfaces
;
Neural Networks, Computer
;
Imagination/physiology*
;
Signal Processing, Computer-Assisted
;
Brain/physiology*
;
Convolutional Neural Networks
8.Recognition of motor imagery electroencephalogram based on flicker noise spectroscopy and weighted filter bank common spatial pattern.
Keling FEI ; Xiaoxian CAI ; Shunzhi CHEN ; Lizheng PAN ; Wei WANG
Journal of Biomedical Engineering 2023;40(6):1126-1134
Due to the high complexity and subject variability of motor imagery electroencephalogram, its decoding is limited by the inadequate accuracy of traditional recognition models. To resolve this problem, a recognition model for motor imagery electroencephalogram based on flicker noise spectrum (FNS) and weighted filter bank common spatial pattern ( wFBCSP) was proposed. First, the FNS method was used to analyze the motor imagery electroencephalogram. Using the second derivative moment as structure function, the ensued precursor time series were generated by using a sliding window strategy, so that hidden dynamic information of transition phase could be captured. Then, based on the characteristic of signal frequency band, the feature of the transition phase precursor time series and reaction phase series were extracted by wFBCSP, generating features representing relevant transition and reaction phase. To make the selected features adapt to subject variability and realize better generalization, algorithm of minimum redundancy maximum relevance was further used to select features. Finally, support vector machine as the classifier was used for the classification. In the motor imagery electroencephalogram recognition, the method proposed in this study yielded an average accuracy of 86.34%, which is higher than the comparison methods. Thus, our proposed method provides a new idea for decoding motor imagery electroencephalogram.
Brain-Computer Interfaces
;
Imagination
;
Signal Processing, Computer-Assisted
;
Electroencephalography/methods*
;
Algorithms
;
Spectrum Analysis
9.Parameter transfer learning based on shallow visual geometry group network and its application in motor imagery classification.
Journal of Biomedical Engineering 2022;39(1):28-38
Transfer learning is provided with potential research value and application prospect in motor imagery electroencephalography (MI-EEG)-based brain-computer interface (BCI) rehabilitation system, and the source domain classification model and transfer strategy are the two important aspects that directly affect the performance and transfer efficiency of the target domain model. Therefore, we propose a parameter transfer learning method based on shallow visual geometry group network (PTL-sVGG). First, Pearson correlation coefficient is used to screen the subjects of the source domain, and the short-time Fourier transform is performed on the MI-EEG data of each selected subject to acquire the time-frequency spectrogram images (TFSI). Then, the architecture of VGG-16 is simplified and the block design is carried out, and the modified sVGG model is pre-trained with TFSI of source domain. Furthermore, a block-based frozen-fine-tuning transfer strategy is designed to quickly find and freeze the block with the greatest contribution to sVGG model, and the remaining blocks are fine-tuned by using TFSI of target subjects to obtain the target domain classification model. Extensive experiments are conducted based on public MI-EEG datasets, the average recognition rate and Kappa value of PTL-sVGG are 94.9% and 0.898, respectively. The results show that the subjects' optimization is beneficial to improve the model performance in source domain, and the block-based transfer strategy can enhance the transfer efficiency, realizing the rapid and effective transfer of model parameters across subjects on the datasets with different number of channels. It is beneficial to reduce the calibration time of BCI system, which promote the application of BCI technology in rehabilitation engineering.
Algorithms
;
Brain-Computer Interfaces
;
Electroencephalography/methods*
;
Humans
;
Imagination
;
Machine Learning
10.Motor imagery electroencephalogram classification based on sparse spatiotemporal decomposition and channel attention.
Hongli LI ; Feichao YIN ; Ronghua ZHANG ; Xin MA ; Hongyu CHEN
Journal of Biomedical Engineering 2022;39(3):488-497
Motor imagery electroencephalogram (EEG) signals are non-stationary time series with a low signal-to-noise ratio. Therefore, the single-channel EEG analysis method is difficult to effectively describe the interaction characteristics between multi-channel signals. This paper proposed a deep learning network model based on the multi-channel attention mechanism. First, we performed time-frequency sparse decomposition on the pre-processed data, which enhanced the difference of time-frequency characteristics of EEG signals. Then we used the attention module to map the data in time and space so that the model could make full use of the data characteristics of different channels of EEG signals. Finally, the improved time-convolution network (TCN) was used for feature fusion and classification. The BCI competition IV-2a data set was used to verify the proposed algorithm. The experimental results showed that the proposed algorithm could effectively improve the classification accuracy of motor imagination EEG signals, which achieved an average accuracy of 83.03% for 9 subjects. Compared with the existing methods, the classification accuracy of EEG signals was improved. With the enhanced difference features between different motor imagery EEG data, the proposed method is important for the study of improving classifier performance.
Algorithms
;
Brain-Computer Interfaces
;
Electroencephalography/methods*
;
Humans
;
Imagery, Psychotherapy
;
Imagination

Result Analysis
Print
Save
E-mail