1.Effects of coloring procedures on zirconia/veneer ceramics bond strength.
Ilkin TUNCEL ; Pelin OZAT ; Erdal EROGLU
The Journal of Advanced Prosthodontics 2014;6(6):451-455
PURPOSE: The most common failure seen in restorations with a zirconia core is total or layered delamination of the ceramic veneer. In the present study, the shear bond strengths between veneering ceramics and colored zirconia oxide core materials were evaluated. MATERIALS AND METHODS: Zirconia discs (15 x 12 x 1.6 mm) were divided into 11 groups of 12 discs each. Groups were colored according to the Vita Classic scale: A3, B1, C4, D2, and D4. Each group was treated with the recommended shading time for 3 s, or with prolonged shading for 60 s, except for the control group. Samples were veneered with 3 mm thick and 3.5 mm in diameter translucent ceramic and subjected to shear test in a universal testing machine with a crosshead speed of 1 mm/min. One-way analysis of variance (ANOVA) and Tukey's HSD tests were used for comparisons of the groups having the same shading times. A paired t-test was used for groups of the same color (3 s/60 s). RESULTS: Among the 11 groups investigated C4 (3 s) had the highest bond strength with a value of 36.40 MPa, while A3 (3 s) showed the lowest bond strength with a value of 29.47 MPa. CONCLUSION: Coloring procedures can affect zirconia/ceramic bond strength. However, the results also showed that bond strengths of all the investigated groups were clinically acceptable.
Ceramics*
2.Evaluation of translucency of monolithic zirconia and framework zirconia materials.
Ilkin TUNCEL ; Işıl TURP ; Aslıhan ÜŞÜMEZ
The Journal of Advanced Prosthodontics 2016;8(3):181-186
PURPOSE: The opacity of zirconia is an esthetic disadvantage that hinders achieving natural and shade-matched restorations. The aim of this study was to evaluate the translucency of non-colored and colored framework zirconia and monolithic zirconia. MATERIALS AND METHODS: The three groups tested were: non-colored framework zirconia, colored framework zirconia with the A3 shade according to Vita Classic Scale, and monolithic zirconia (n=5). The specimens were fabricated in the dimensions of 15×12×0.5 mm. A spectrophotometer was used to measure the contrast ratio, which is indicative of translucency. Three measurements were made to obtain the contrast ratios of the materials over a white background (L*w) and a black background (L*b). The data were analyzed using the one-way analysis of variance and Tukey HSD tests. One specimen from each group was chosen for scanning electron microscope analysis. The determined areas of the SEM images were divided by the number of grains in order to calculate the mean grain size. RESULTS: Statistically significant differences were observed among all groups (P<.05). Non-colored zirconia had the highest translucency with a contrast ratio of 0.75, while monolithic zirconia had the lowest translucency with a contrast ratio of 0.8. The mean grain sizes of the non-colored, colored, and monolithic zirconia were 233, 256, and 361 nm, respectively. CONCLUSION: The translucency of the zirconia was affected by the coloring procedure and the grain size. Although monolithic zirconia may not be the best esthetic material for the anterior region, it may serve as an alternative in the posterior region for the bilayered zirconia restorations.
Cereals
3.The effect of coloring liquids on the translucency of zirconia framework.
Ilkin TUNCEL ; Erdal EROGLU ; Tugrul SARI ; Aslihan USUMEZ
The Journal of Advanced Prosthodontics 2013;5(4):448-451
PURPOSE: Translucency of all-ceramic restorations is an important factor which affects the final appearance and esthetic outcome of the restoration. The aim of this study was to evaluate the effect of the shade of coloring liquid on the translucency of zirconia framework. MATERIALS AND METHODS: Thirty zirconium oxide core plate (15 x 12 x 0.5 mm) were divided into 6 groups of 5 plates each. Each group was classified according to the shade of coloring liquid based on Vita Classic Scale (A2, A3, B1, C2, and D2), and each sample was immersed in coloring liquid for 3 seconds as recommended by the manufacturer, except for the control group. Contrast ratio, as a translucency parameter, was calculated using a spectrophotometer and the data were analyzed with oneway analysis of variance (ANOVA) and Tukey's honestly significant differences (HSD) tests (alpha=.05). RESULTS: Significant differences in translucency among the control and test groups, and the B1 shaded group and other shades was observed. There were no significant differences among A2, A3, C2, and D2 shaded groups. CONCLUSION: The translucency of the zirconium oxide cores was affected by the coloring procedure and significant differences in the translucency measurements were identified between specific shades.
Zirconium