1.Mitochondrial Genome Editing: Exploring the Possible Relationship of the Atherosclerosis-Associated Mutation m.15059G>A With Defective Mitophagy
Vasily N. SUKHORUKOV ; Victoria A. KHOTINA ; Vladislav A. KALMYKOV ; Alexander D. ZHURAVLEV ; Vasily V. SINYOV ; Daniil Y. POPOV ; Andrey Y. VINOKUROV ; Igor A. SOBENIN ; Alexander N. OREKHOV
Journal of Lipid and Atherosclerosis 2024;13(2):166-183
Objective:
The aim of this study was to evaluate the effect of the m.15059G>A mitochondrial nonsense mutation on cellular functions related to atherosclerosis, such as lipidosis, proinflammatory response, and mitophagy. Heteroplasmic mutations have been proposed as a potential cause of mitochondrial dysfunction, potentially disrupting the innate immune response and contributing to the chronic inflammation associated with atherosclerosis.
Methods:
The human monocytic cell line THP-1 and cytoplasmic hybrid cell line TCHSMAM1 were used. An original approach based on the CRISPR/Cas9 system was developed and used to eliminate mitochondrial DNA (mtDNA) copies carrying the m.15059G>A mutation in the MT-CYB gene. The expression levels of genes encoding enzymes related to cholesterol metabolism were analyzed using quantitative polymerase chain reaction. Proinflammatory cytokine secretion was assessed using enzyme-linked immunosorbent assays. Mitophagy in cells was detected using confocal microscopy.
Results:
In contrast to intact TC-HSMAM1 cybrids, Cas9-TC-HSMAM1 cells exhibited a decrease in fatty acid synthase (FASN) gene expression following incubation with atherogenic low-density lipoprotein. TC-HSMAM1 cybrids were found to have defective mitophagy and an inability to downregulate the production of pro-inflammatory cytokines (to establish immune tolerance) upon repeated lipopolysaccharide stimulation. Removal of mtDNA harboring the m.15059G>A mutation resulted in the re-establishment of immune tolerance and the activation of mitophagy in the cells under investigation.
Conclusion
The m.15059G>A mutation was found to be associated with defective mitophagy, immune tolerance, and impaired metabolism of intracellular lipids due to upregulation of FASN in monocytes and macrophages.
2.Therapeutic effects of garlic in cardiovascular atherosclerotic disease.
Igor A SOBENIN ; Veronika A MYASOEDOVA ; Maria I ILTCHUK ; Dong-Wei ZHANG ; Alexander N OREKHOV
Chinese Journal of Natural Medicines (English Ed.) 2019;17(10):721-728
Garlic (Allium sativum) is a widely known medicinal plant, potential of which remains to be fully evaluated. Its wide-range beneficial effects appear to be relevant for treatment and prevention of atherosclerosis and related diseases. It is generally believed that garlic-based preparations are able to improve lipid profile in humans, inhibit cholesterol biosynthesis, suppress low density lipoprotein oxidation, modulate blood pressure, suppress platelet aggregation, lower plasma fibrinogen level and increase fibrinolytic activity, thus providing clinically relevant cardioprotective and anti-atherosclerotic effects. It is important to assess the level of evidence available for different protective effects of garlic and to understand the underlying mechanisms. This information will allow adequate integration of garlic-based preparations to clinical practice. In this review, we discuss the mechanisms of anti-atherosclerotic effects of garlic preparations, focusing on antihyperlipidemic, hypotensive, anti-platelet and direct anti-atherosclerotic activities of the medicinal plant. We also provide an overview of available meta-analyses and a number of clinical trials that assess the beneficial effects of garlic.