1.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*
2.Buyang Huanwu Decoction targets PPARG/SPP1/CD44 signaling pathway: mechanisms of lipid dysregulation and treatment in idiopathic pulmonary fibrosis.
Gang-Gang LI ; Xiao-Chuan PAN ; Fei WANG ; Quan-Yu DU
China Journal of Chinese Materia Medica 2025;50(14):3821-3834
Idiopathic pulmonary fibrosis(IPF) is a chronic progressive interstitial lung disease characterized by a complex pathogenesis and limited treatment options. Although studies have indicated that lipid metabolism dysregulation is associated with the progression of IPF, the core regulatory mechanisms remain unclear. By integrating RNA sequencing data from the GEO database, we identified four key genes related to lipid metabolism: peroxisome proliferator-activated receptor gamma(PPARG), secreted phosphoprotein 1(SPP1), caspase 3(CASP3), and platelet endothelial cell adhesion molecule 1(PECAM1). Further validation using single-cell RNA sequencing revealed the cell-specific expression patterns of these genes. The results found that PPARG was significantly downregulated in alveolar macrophages while SPP1 was significantly upregulated. Mechanistic studies indicated that PPARG negatively regulated SPP1 expression, and the interaction between SPP1 and cluster of differentiation 44(CD44) activated intercellular signaling pathways that promoted fibrosis. Through network pharmacology and molecular docking, it was predicted that the bioactive components of the traditional Chinese medicine formula, namely Buyang Huanwu Decoction may target PPARG to modulate lipid metabolism pathways. In a bleomycin-induced rat model with IPF, this paper randomly divided the rats into six groups(control, group, model group, pirfenidone group, and low, middle, and high-dose groups of Buyang Huanwu Decoction). The results demonstrated that Buyang Huanwu Decoction treatment significantly improved tissue pathological damage, reduced collagen deposition, and alleviated lipid metabolism dysregulation. Western blot analysis confirmed that Buyang Huanwu Decoction mediated the upregulation of PPARG and inhibited the activation of the SPP1/CD44 pathway. The multi-omics study elucidated the role of the PPARG/SPP1/CD44 pathway as a key regulatory factor in lipid metabolism in IPF, providing evidence that Buyang Huanwu Decoction exerted its antifibrotic effects through this novel mechanism and thus offering new insights into the therapeutic prospects for IPF.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Signal Transduction/drug effects*
;
PPAR gamma/genetics*
;
Humans
;
Osteopontin/genetics*
;
Lipid Metabolism/drug effects*
;
Idiopathic Pulmonary Fibrosis/genetics*
;
Hyaluronan Receptors/genetics*
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Molecular Docking Simulation
3.Evidence mapping of clinical research on traditional Chinese medicine in treatment of idiopathic pulmonary fibrosis.
Li-Li XU ; Dan-Yang ZANG ; Shu-Guang YANG ; Ning-Xia YU ; Xue-Qing YU
China Journal of Chinese Materia Medica 2024;49(24):6803-6812
This study systematically retrieved the clinical studies in the treatment of idiopathic pulmonary fibrosis(IPF) with traditional Chinese medicine(TCM) and employed evidence mapping to summarize the overall research status and deficiencies of TCM in treating IPF. CNKI, VIP, SinoMed, Wanfang, PubMed, Web of Science, Cochrane Library, and EMbase were searched for the relevant studies published from inception to February 20, 2024. The distribution characteristics of the evidence were analyzed and presented through charts combined with words. A total of 323 studies were included, including 295 randomized controlled trials(RCTs) and 28 Meta-analysis. The number of publications in this field rose with fluctuations, yet the proportion of core papers was low, and the research lacked the attention of foreign researchers. There were scant cross-regional collaboration between researchers and insufficient attention from relevant departments. The included RCT generally had low quality, with small sample sizes, short treatment courses, and insufficient attention to acute exacerbation and complications of IPF. In addition, few studies employed TCM alone, and the TCM syndromes remained to be standardized. A considerable number of outcome indicators were involved in the publications, while the majority of them failed to emphasize the disparity between primary and secondary outcome indicators. There were diverse reference standards for the comprehensive indicators among the outcome indicators, and insufficient attention was paid to long-term prognosis and health economic indicators. The included Meta-analysis concluded that TCM had potential clinical efficacy in treating IPF. However, the methodological credibility grading and the GRADE grading results of outcome indicators were low. The results suggested that TCM demonstrated certain advantages in the treatment of IPF, while the quality of the included studies was not high. In the future, clinical research protocols should be standardized and registered. Multicenter, large-sample, and follow-up clinical studies should be conducted. The research reports should refer to relevant reporting standards to improve the quality and generate high-level evidence, thus providing a reference for the clinical application of TCM in the treatment of IPF.
Humans
;
Idiopathic Pulmonary Fibrosis/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Randomized Controlled Trials as Topic
4.Potential biomarkers for diagnosis and disease evaluation of idiopathic pulmonary fibrosis.
Qing WANG ; Zhaoliang XIE ; Nansheng WAN ; Lei YANG ; Zhixian JIN ; Fang JIN ; Zhaoming HUANG ; Min CHEN ; Huiming WANG ; Jing FENG
Chinese Medical Journal 2023;136(11):1278-1290
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by progressive lung fibrogenesis and histological features of usual interstitial pneumonia. IPF has a poor prognosis and presents a spectrum of disease courses ranging from slow evolving disease to rapid deterioration; thus, a differential diagnosis remains challenging. Several biomarkers have been identified to achieve a differential diagnosis; however, comprehensive reviews are lacking. This review summarizes over 100 biomarkers which can be divided into six categories according to their functions: differentially expressed biomarkers in the IPF compared to healthy controls; biomarkers distinguishing IPF from other types of interstitial lung disease; biomarkers differentiating acute exacerbation of IPF from stable disease; biomarkers predicting disease progression; biomarkers related to disease severity; and biomarkers related to treatment. Specimen used for the diagnosis of IPF included serum, bronchoalveolar lavage fluid, lung tissue, and sputum. IPF-specific biomarkers are of great clinical value for the differential diagnosis of IPF. Currently, the physiological measurements used to evaluate the occurrence of acute exacerbation, disease progression, and disease severity have limitations. Combining physiological measurements with biomarkers may increase the accuracy and sensitivity of diagnosis and disease evaluation of IPF. Most biomarkers described in this review are not routinely used in clinical practice. Future large-scale multicenter studies are required to design and validate suitable biomarker panels that have diagnostic utility for IPF.
Humans
;
Idiopathic Pulmonary Fibrosis/diagnosis*
;
Biomarkers
;
Lung Diseases, Interstitial
;
Lung
;
Bronchoalveolar Lavage Fluid
;
Disease Progression
;
Prognosis
6.Biomechanical properties of epithelial mesenchymal transition in idiopathic pulmonary fibrosis.
Mingyan LI ; Meihao SUN ; Yuanbo JIA ; Hui REN ; Han LIU
Journal of Biomedical Engineering 2023;40(4):632-637
Idiopathic pulmonary fibrosis (IPF) is a progressive scar-forming disease with a high mortality rate that has received widespread attention. Epithelial mesenchymal transition (EMT) is an important part of the pulmonary fibrosis process, and changes in the biomechanical properties of lung tissue have an important impact on it. In this paper, we summarize the changes in the biomechanical microenvironment of lung tissue in IPF-EMT in recent years, and provide a systematic review on the effects of alterations in the mechanical microenvironment in pulmonary fibrosis on the process of EMT, the effects of mechanical factors on the behavior of alveolar epithelial cells in EMT and the biomechanical signaling in EMT, in order to provide new references for the research on the prevention and treatment of IPF.
Humans
;
Epithelial-Mesenchymal Transition
;
Idiopathic Pulmonary Fibrosis
;
Signal Transduction
7.Identification of SULF1 as a Shared Gene in Idiopathic Pulmonary Fibrosis and Lung Adenocarcinoma.
Junyi WANG ; Lu LU ; Xiang HE ; Lijuan MA ; Tao CHEN ; Guoping LI ; Haijie YU
Chinese Journal of Lung Cancer 2023;26(9):669-683
BACKGROUND:
Idiopathic pulmonary fibrosis (IPF) is an idiopathic chronic, progressive interstitial lung disease with a diagnosed median survival of 3-5 years. IPF is associated with an increased risk of lung cancer. Therefore, exploring the shared pathogenic genes and molecular pathways between IPF and lung adenocarcinoma (LUAD) holds significant importance for the development of novel therapeutic approaches and personalized precision treatment strategies for IPF combined with lung cancer.
METHODS:
Bioinformatics analysis was conducted using publicly available gene expression datasets of IPF and LUAD from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis was employed to identify common genes involved in the progression of both diseases, followed by functional enrichment analysis. Subsequently, additional datasets were used to pinpoint the core shared genes between the two diseases. The relationship between core shared genes and prognosis, as well as their expression patterns, clinical relevance, genetic characteristics, and immune-related functions in LUAD, were analyzed using The Cancer Genome Atlas (TCGA) database and single-cell RNA sequencing datasets. Finally, potential therapeutic drugs related to the identified genes were screened through drug databases.
RESULTS:
A total of 529 shared genes between IPF and LUAD were identified. Among them, SULF1 emerged as a core shared gene associated with poor prognosis. It exhibited significantly elevated expression levels in LUAD tissues, concomitant with high mutation rates, genomic heterogeneity, and an immunosuppressive microenvironment. Subsequent single-cell RNA-seq analysis revealed that the high expression of SULF1 primarily originated from tumor-associated fibroblasts. This study further demonstrated an association between SULF1 expression and tumor drug sensitivity, and it identified potential small-molecule drugs targeting SULF1 highly expressed fibroblasts.
CONCLUSIONS
This study identified a set of shared molecular pathways and core genes between IPF and LUAD. Notably, SULF1 may serve as a potential immune-related biomarker and therapeutic target for both diseases.
Humans
;
Lung Neoplasms/genetics*
;
Adenocarcinoma of Lung/genetics*
;
Idiopathic Pulmonary Fibrosis/genetics*
;
Adenocarcinoma
;
Cancer-Associated Fibroblasts
;
Prognosis
;
Tumor Microenvironment
;
Sulfotransferases
8.Research progress on the role and mechanism of 5-hydroxytryptamine and M2 macrophages in pulmonary interstitial fibrosis.
Yiming DENG ; Changwen DENG ; Xiaoping ZHU
Chinese Critical Care Medicine 2023;35(9):1004-1008
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease, the cause is not yet clear. Pathological manifestations are abnormal repair changes resulting from sustained lung injury. Macrophages have been identified as playing a key role in IPF pathogenesis. In different local microenvironments, macrophages can exhibit either classically activated (M1) or alternately activated (M2) phenotypes. M1 plays a key role in promoting inflammatory response and is involved in the process of causing alveolar tissue injury. M2 is involved in wound healing and stopping lung inflammation. Previous studies have shown that activation of 5-hydroxytryptamine (5-HT) signaling is enhanced in pulmonary fibrosis and that 5-HT receptors play an important role in the observed pro-fibrotic effects. As a multifunctional signaling molecule, 5-HT is closely related to lung macrophage polarization, early lung tissue injury, abnormal proliferation and repair, and late extracellular matrix (ECM) deposition. This article reviewed the role of 5-HT and M2 macrophages in the pathogenesis of IPF and the possible regulatory mechanism of 5-HT, in order to provide a reference for further research.
Humans
;
Serotonin
;
Macrophages
;
Lung Diseases, Interstitial/pathology*
;
Lung/pathology*
;
Idiopathic Pulmonary Fibrosis
;
Fibrosis
9.Efficacy and safety of Kangxian Huanji Granule as adjunctive treatment in acute exacerbation of idiopathic pulmonary fibrosis: An exploratory randomized controlled trial.
Jian-Sheng LI ; Hai-Long ZHANG ; Wen GUO ; Lu WANG ; Dong ZHANG ; Li-Min ZHAO ; Miao ZHOU
Journal of Integrative Medicine 2023;21(6):543-549
BACKGROUND:
Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is an important occurrence in the natural history of idiopathic pulmonary fibrosis (IPF), associated with high hospitalization rates, high mortality and poor prognosis. At present, there is no effective treatment for AE-IPF. Chinese herbal medicine has some advantages in treating IPF, but its utility in AE-IPF is unclear.
OBJECTIVE:
The treatment of AE-IPF with Kangxian Huanji Granule (KXHJ), a compound Chinese herbal medicine, lacks an evidence-based justification. This study explores the efficacy and safety of KXHJ in patients with AE-IPF.
DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS:
We designed a randomized, double-blind, placebo-controlled, exploratory clinical trial. A total of 80 participants diagnosed with AE-IPF were randomly assigned to receive KXHJ or a matching placebo; the treatment included a 10 g dose, administered twice daily for 4 weeks, in addition to conventional treatment. Participants were followed up for 12 weeks after the treatment.
MAIN OUTCOME MEASURES:
The primary endpoints were treatment failure rate and all-cause mortality. Secondary endpoints included the length of hospitalization, overall survival, acute exacerbation rate, intubation rate, the modified British Medical Research Council (mMRC) score, and the St George's Respiratory Questionnaire for IPF (SGRQ-I) score.
RESULTS:
The rate of treatment failure at 4 weeks was lower in the intervention group compared to the control group (risk ratio [RR]: 0.22; 95% confidence interval [CI]: 0.051 to 0.965, P = 0.023). There was no significant difference in all-cause mortality at 16 weeks (RR: 0.75; 95% CI: 0.179 to 3.138; P > 0.999) or in the acute exacerbation rate during the 12-week follow-up period (RR: 0.69; 95% CI: 0.334 to 1.434; P = 0.317). The intervention group had a shorter length of hospitalization than the control group (mean difference [MD]: -3.30 days; 95% CI, -6.300 to -0.300; P = 0.032). Significant differences in the mean change from baseline in the mMRC (between-group difference: -0.67; 95% CI: -0.89 to -0.44; P < 0.001) and SGRQ-I score (between-group difference: -10.36; 95% CI: -16.483 to -4.228; P = 0.001) were observed after 4 weeks, and also in the mMRC (between-group difference: -0.67; 95% CI: -0.91 to -0.43; P < 0.001) and SGRQ-I (between-group difference: -10.28; 95% CI, -15.838 to -4.718; P < 0.001) at 16 weeks. The difference in the adverse events was not significant.
CONCLUSION:
KXHJ appears to be effective and safe for AE-IPF and can be considered a complementary treatment in patients with AE-IPF. As a preliminary exploratory study, our results provide a basis for further clinical research.
TRIAL REGISTRATION
Chinese Clinical Trial Registry (ChiCTR1900026289). Please cite this article as: Li JS, Zhang HL, Guo W, Wang L, Zhang D, Zhao LM, Zhou M. Efficacy and safety of Kangxian Huanji Granule as adjunctive treatment in acute exacerbation of idiopathic pulmonary fibrosis: an exploratory randomized controlled trial. J Integr Med. 2023; 21(6): 543-549.
Humans
;
Double-Blind Method
;
Drugs, Chinese Herbal/therapeutic use*
;
Idiopathic Pulmonary Fibrosis/drug therapy*
;
Treatment Outcome
10.Association between chronic lung diseases and the risk of lung cancer in UK Biobank: observational and Mendelian randomization analyses.
Jing ZHANG ; Zhi Min MA ; Hui WANG ; Ya Ting FU ; Chen JI ; Meng ZHU ; Hong Bing SHEN ; Hong Xia MA
Chinese Journal of Preventive Medicine 2023;57(8):1147-1152
Objective: To investigate the association between chronic lung diseases and the risk of lung cancer. Methods: Using UK Biobank (UKB) survey data, 472 397 participants who had not previously been diagnosed with cancer and whose self-reported sex was consistent with their genetic sex were studied. Information on the prevalence of previous chronic lung diseases, general demographic characteristics and the prevalence of lung cancer was collected using baseline questionnaires and national health system data. The multivariate Cox proportional risk regression model was used to analyze the association between four previous chronic lung diseases (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and interstitial pulmonary disease) and the risk of lung cancer. A total of 458 526 participants with genotype data in the observational study were selected as research objects, and the closely related and independent genetic loci with four chronic lung diseases were selected as instrumental variables, and the association between four chronic lung diseases and the risk of lung cancer was analyzed by Mendelian randomization (MR). The dose-response relationship between genetic risk score and the risk of lung cancer in different chronic lung diseases was evaluated using a restricted cubic spline function. Results: The age [M (Q1, Q3)] of the subjects was 57 (50, 63) years old, and there were 3 516 new cases of lung cancer (0.74%) during follow-up. The multivariate Cox proportional hazard regression model analysis showed that previous chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were associated with the risk of lung cancer, about 1.61 (1.49-1.75) and 2.61 (1.24-5.49), respectively. MR Studies showed that genetically predicted chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were associated with the risk of lung cancer, with HR (95%CI) of 1.10 (1.03-1.19) and 1.04 (1.01-1.08), respectively. The results of restricted cubic spline function analysis showed that the risk of lung cancer increased linearly with the increase of genetic risk scores for chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (P<0.05). Neither observational studies nor Mendelian randomization analysis found an association between previous asthma or interstitial lung disease and the risk of lung cancer (both P values>0.05). Conclusion: Chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis are potential risk factors for lung cancer.
Humans
;
Middle Aged
;
Mendelian Randomization Analysis
;
Biological Specimen Banks
;
Lung Neoplasms/genetics*
;
Pulmonary Disease, Chronic Obstructive/genetics*
;
Asthma/genetics*
;
Idiopathic Pulmonary Fibrosis/genetics*
;
United Kingdom/epidemiology*
;
Genome-Wide Association Study

Result Analysis
Print
Save
E-mail