1.Dimethoate induced oxidative damage and histopathological changes in lung of adult rats: modulatory effects of selenium and/or vitamin E.
Ibtissem Ben AMARA ; Nejla SOUDANI ; Afef TROUDI ; Ahmed HAKIM ; Khaled Mounir ZEGHAL ; Tahia BOUDAWARA ; Najiba ZEGHAL
Biomedical and Environmental Sciences 2012;25(3):340-351
OBJECTIVETo determine the efficiency of selenium and/or vitamin E to alleviate lung oxidative damage induced by dimethoate, an organophosphorus compound.
METHODSAdult Wistar rats were exposed during 30 days either to dimethoate (0.2 g/L of drinking water), dimethoate+selenium (0.5 mg/kg of diet), dimethoate+vitamin E (100 mg/kg of diet), or dimethoate+selenium+vitamin E.
RESULTSExposure to dimethoate caused oxidative stress in lung evidenced by an increase of malondialdehyde, protein carbonyl groups and advanced oxidation protein products. An increase in glutathione peroxidase, superoxide dismutase, catalase and a decrease in acetylcholinesterase and butyrylcholinesterase activities, glutathione, non-protein thiols and vitamins C levels were observed. Histopathological changes in lung tissue were noted as emphysema, hemorrhages and hemosiderin deposits. Co-administration of selenium or vitamin E to the diet of dimethoate treated rats ameliorated the biochemical parameters as well as histological impairments. The joint effect of these elements was more powerful in antagonizing dimethoate-induced lung oxidative damage.
CONCLUSIONWe concluded that selenium and vitamin E ameliorated the toxic effects of this pesticide in lung tissue suggesting their role as potential antioxidants.
Acetylcholinesterase ; metabolism ; Animals ; Antioxidants ; administration & dosage ; pharmacology ; Ascorbic Acid ; metabolism ; Biomarkers ; Butyrylcholinesterase ; metabolism ; Dimethoate ; adverse effects ; Glutathione ; metabolism ; Lipid Peroxidation ; drug effects ; Lung Diseases ; diagnosis ; prevention & control ; Oxidative Stress ; Rats ; Rats, Wistar ; Selenium ; administration & dosage ; pharmacology ; Vitamin E ; administration & dosage ; pharmacology
2.Efficacy of Essential Trace Elements Supplementation on Mineral Composition, Sperm Characteristics, Antioxidant Status, and Genotoxicity in Testis of Tebuconazole-treated Rats.
Hajer BEN SAAD ; Fatma BEN ABDALLAH ; Intidhar BKHAIRIA ; Ons BOUDAWARA ; Moncef NASRI ; Ahmed HAKIM ; Ibtissem BEN AMARA
Biomedical and Environmental Sciences 2020;33(10):760-770
Objective:
This research was performed to evaluate the effect of tebuconazole (TBZ) on reproductive organs of male rats and to assess the protective role of combined essential trace elements in alleviating the detrimental effect of TBZ on male reproductive function.
Methods:
For this purpose, 48 rats were exposed to 100 mg/kg TBZ, TBZ supplemented with zinc (Zn), selenium (Se), copper (Cu), and iron (Fe), TBZ + (Se + Zn); TBZ + Cu; or TBZ + Fe. The experiment was conducted for 30 consecutive days.
Results:
TBZ caused a significant perturbation in mineral levels and reduction in reproductive organs weights, plasma testosterone level, and testicular antioxidant enzyme activities. The TBZ-treated group also showed a significant increase in sperm abnormalities (count, motility, and viability percent), plasma follicle-stimulating hormone and luteinizing hormone concentrations, lipid peroxidation, protein oxidation, and severe DNA degradation in comparison with the controls. Histopathologically, TBZ caused testis impairments. Conversely, treatment with trace elements, in combination or alone, improved the reproductive organ weights, sperm characteristics, TBZ-induced toxicity, and histopathological modifications in testis.
Conclusion
TBZ exerts significant harmful effects on male reproductive system. The concurrent administration of trace elements reduces testis dysfunction, fertility, and toxicity induced by TBZ.
Animal Feed/analysis*
;
Animals
;
Antioxidants/metabolism*
;
Diet
;
Dietary Supplements/analysis*
;
Fungicides, Industrial/adverse effects*
;
Male
;
Minerals/metabolism*
;
Mutagenicity Tests
;
Rats
;
Rats, Wistar
;
Spermatozoa/physiology*
;
Testis/physiology*
;
Trace Elements/metabolism*
;
Triazoles/adverse effects*
3.Potassium Bromate-induced Changes in the Adult Mouse Cerebellum Are Ameliorated by Vanillin.
Hajer BEN SAAD ; Dorra DRISS ; Imen JABALLI ; Hanen GHOZZI ; Ons BOUDAWARA ; Michael DROGUET ; Christian MAGNÉ ; Monsef NASRI ; Khaled Mounir ZEGHAL ; Ahmed HAKIM ; Ibtissem BEN AMARA
Biomedical and Environmental Sciences 2018;31(2):115-125
OBJECTIVE:
The current study aimed to elucidate the effect of vanillin on behavioral changes, oxidative stress, and histopathological changes induced by potassium bromate (KBrO3), an environmental pollutant, in the cerebellum of adult mice.
METHODS:
The animals were divided into four groups: group 1 served as a control, group 2 received KBrO3, group 3 received KBrO3 and vanillin, and group 4 received only vanillin. We then measured behavioral changes, oxidative stress, and molecular and histological changes in the cerebellum.
RESULTS:
We observed significant behavioral changes in KBrO3-exposed mice. When investigating redox homeostasis in the cerebellum, we found that mice treated with KBrO3 had increased lipid peroxidation and protein oxidation in the cerebellum. These effects were accompanied by decreased Na+-K+ and Mg2+ ATPase activity and antioxidant enzyme gene expression when compared to the control group. Additionally, there was a significant increase in cytokine gene expression in KBrO3-treated mice. Microscopy revealed that KBrO3 intoxication resulted in numerous degenerative changes in the cerebellum that were substantially ameliorated by vanillin supplementation. Co-administration of vanillin blocked the biochemical and molecular anomalies induced by KBrO3.
CONCLUSION
Our results demonstrate that vanillin is a potential therapeutic agent for oxidative stress associated with neurodegenerative diseases.
Animals
;
Antioxidants
;
metabolism
;
Behavior, Animal
;
drug effects
;
Benzaldehydes
;
pharmacology
;
Bromates
;
toxicity
;
Cerebellum
;
drug effects
;
metabolism
;
pathology
;
Cytokines
;
genetics
;
metabolism
;
Environmental Pollutants
;
toxicity
;
Gene Expression
;
drug effects
;
Lipid Peroxidation
;
drug effects
;
Mice
;
Oxidative Stress
;
drug effects
;
Rotarod Performance Test