1.Intestinal Stricture in Crohn's Disease.
Chen Wang CHANG ; Jau Min WONG ; Chien Chih TUNG ; I Lun SHIH ; Horng Yuan WANG ; Shu Chen WEI
Intestinal Research 2015;13(1):19-26
Crohn's disease (CD) is a disease with chronic inflammation of unknown etiology involving any part of the gastrointestinal tract. The incidence and prevalence of CD are increasing recently in Asia. Half of the CD patients will have intestinal complications, such as strictures or fistulas, within 20 years after diagnosis. Twenty-five percentage of CD patients have had at least one small bowel stricture and 10% have had at least one colonic stricture and lead to significant complications. Most of these patients will require at least one surgery during their lifetime. Early diagnosis and evaluation with adequate managements for the patients can prevent disability and mortality of these patient. Here, we reviewed the current incidence of CD with stricture, the etiology of stricture, and how to diagnose and manage the stricture.
Asia
;
Colon
;
Constriction, Pathologic*
;
Crohn Disease*
;
Diagnosis
;
Disease Management
;
Early Diagnosis
;
Fistula
;
Gastrointestinal Tract
;
Humans
;
Incidence
;
Inflammation
;
Intestines
;
Mortality
;
Prevalence
2.Analysis of Spatial and Temporal Protein Expression in the Cerebral Cortex after Ischemia-Reperfusion Injury.
Yuan Hao CHEN ; Yung Hsiao CHIANG ; Hsin I MA
Journal of Clinical Neurology 2014;10(2):84-93
BACKGROUND AND PURPOSE: Hypoxia, or ischemia, is a common cause of neurological deficits in the elderly. This study elucidated the mechanisms underlying ischemia-induced brain injury that results in neurological sequelae. METHODS: Cerebral ischemia was induced in male Sprague-Dawley rats by transient ligation of the left carotid artery followed by 60 min of hypoxia. A two-dimensional differential proteome analysis was performed using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to compare changes in protein expression on the lesioned side of the cortex relative to that on the contralateral side at 0, 6, and 24 h after ischemia. RESULTS: The expressions of the following five proteins were up-regulated in the ipsilateral cortex at 24 h after ischemia-reperfusion injury compared to the contralateral (i.e., control) side: aconitase 2, neurotensin-related peptide, hypothetical protein XP-212759, 60-kDa heat-shock protein, and aldolase A. The expression of one protein, dynamin-1, was up-regulated only at the 6-h time point. The level of 78-kDa glucose-regulated protein precursor on the lesioned side of the cerebral cortex was found to be high initially, but then down-regulated by 24 h after the induction of ischemia-reperfusion injury. The expressions of several metabolic enzymes and translational factors were also perturbed soon after brain ischemia. CONCLUSIONS: These findings provide insights into the mechanisms underlying the neurodegenerative events that occur following cerebral ischemia.
Aconitate Hydratase
;
Aged
;
Anoxia
;
Brain Injuries
;
Brain Ischemia
;
Carotid Arteries
;
Cerebral Cortex*
;
Dynamin I
;
Fructose-Bisphosphate Aldolase
;
Geriatrics
;
Heat-Shock Proteins
;
Humans
;
Ischemia
;
Ligation
;
Male
;
Mass Spectrometry
;
Proteome
;
Proteomics
;
Rats, Sprague-Dawley
;
Reperfusion Injury*
3.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
4.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
5.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
6.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
7.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
8.A Systemic Review and Experts' Consensus for Long-acting Injectable Antipsychotics in Bipolar Disorder.
Yuan Hwa CHOU ; Po Chung CHU ; Szu Wei WU ; Jen Chin LEE ; Yi Hsuan LEE ; I Wen SUN ; Chen Lin CHANG ; Chien Liang HUANG ; I Chao LIU ; Chia Fen TSAI ; Yung Chieh YEN
Clinical Psychopharmacology and Neuroscience 2015;13(2):121-128
Bipolar disorder (BD) is a major psychiatric disorder that is easily misdiagnosed. Patient adherence to a treatment regimen is of utmost importance for successful outcomes in BD. Several trials of antipsychotics suggested that depot antipsychotics, including long-acting first- and second-generation agents, are effective in preventing non-adherence, partial adherence, and in reducing relapse in BD. Various long-acting injectable (LAI) antipsychotics are available, including fluphenazine decanoate, haloperidol decanoate, olanzapine pamoate, risperidone microspheres, paliperidone palmitate, and aripiprazole monohydrate. Due to the increasing number of BD patients receiving LAI antipsychotics, treatment guidelines have been developed. However, the clinical applicability of LAI antipsychotics remains a global cause for concern, particularly in Asian countries. Expert physicians from Taiwan participated in a consensus meeting, which was held to review key areas based on both current literature and clinical practice. The purpose of this meeting was to generate a practical and implementable set of recommendations for LAI antipsychotic use to treat BD; target patient groups, dosage, administration, and adverse effects were considered. Experts recommended using LAI antipsychotics in patients with schizophrenia, rapid cycling BD, BD I, and bipolar-type schizoaffective disorder. LAI antipsychotic use was recommended in BD patients with the following characteristics: multiple episodes and low adherence; seldom yet serious episodes; low adherence potential per a physician's clinical judgment; preference for injectable agents over oral agents; and multiple oral agent users still experiencing residual symptoms.
Antipsychotic Agents*
;
Asian Continental Ancestry Group
;
Bipolar Disorder*
;
Consensus*
;
Fluphenazine
;
Haloperidol
;
Humans
;
Judgment
;
Microspheres
;
Patient Compliance
;
Psychotic Disorders
;
Recurrence
;
Risperidone
;
Schizophrenia
;
Taiwan
;
Aripiprazole
;
Paliperidone Palmitate
9.Incarcerated Hiatal Hernia with Perforation after Laparoscopic Total Gastrectomy with Roux-en-Y Reconstruction: a Case Report
Nai Yu WANG ; Chung Yu TSAI ; Yuan Yuarn LIU ; I Shu CHEN ; Kai Hung HO
Journal of Gastric Cancer 2019;19(1):132-137
The occurrence of hiatal hernia after total gastrectomy with Roux-en-Y reconstruction is rare. We report the case of a 76-year-old man who presented with dyspnea, vomiting, and fever around 8 days after total gastrectomy with Roux-en-Y reconstruction. Abdominal computed tomography revealed a hiatal hernia containing part of the small intestine in the left thoracic cavity. Emergent reduction and repair of the hiatal hernia were performed later. Operative findings revealed that the Roux limb was incarcerated in the left pleural cavity. Esophagojejunostomy leakage, perforation of the small intestine with transient ischemic change, and pyothorax were also found. Thus, feeding jejunostomy, thoracoscopic decortication, and diversion T-tube esophagostomy were performed. Considering that the main cause of hiatal hernia is blunt dissection with division of the phrenoesophageal membrane, approximating the crus with 1 or 2 figure-8 sutures, according to the size of the defect, to prevent the incidence of hiatal hernia after total gastrectomy may be performed.
Aged
;
Dyspnea
;
Empyema, Pleural
;
Esophagostomy
;
Extremities
;
Fever
;
Gastrectomy
;
Hernia
;
Hernia, Hiatal
;
Humans
;
Incidence
;
Intestine, Small
;
Jejunostomy
;
Membranes
;
Pleural Cavity
;
Stomach Neoplasms
;
Sutures
;
Thoracic Cavity
;
Vomiting
10.ALDH2 Gene: Its Effects on the Neuropsychological Functions in Patients with Opioid Use Disorder Undergoing Methadone Maintenance Treatment
Po-Wei LEE ; Tzu-Yun WANG ; Yun-Hsuan CHANG ; Sheng-Yu LEE ; Shiou-Lan CHEN ; Ze-Cheng WANG ; Po See CHEN ; Chun-Hsien CHU ; San-Yuan HUANG ; Nian-Sheng TZENG ; I Hui LEE ; Kao Chin CHEN ; Yen Kuang YANG ; Jau-Shyong HONG ; Ru-Band LU
Clinical Psychopharmacology and Neuroscience 2020;18(1):136-144
Objective:
Patients with opioid use disorder (OUD) have impaired attention, inhibition control, and memory function. The aldehyde dehydrogenase 2 (ALDH2 ) gene has been associated with OUD and ALDH2 gene polymorphisms may affect aldehyde metabolism and cognitive function in other substance use disorder. Therefore, we aimed to investigate whether ALDH2 genotypes have significant effects on neuropsychological functions in OUD patients undergoing methadone maintenance therapy (MMT).
Methods:
OUD patients undergoing MMT were investigated and followed-up for 12 weeks. ALDH2 gene polymorphisms were genotyped. Connors’ Continuous Performance Test (CPT) and the Wechsler Memory Scale-Revised (WMS-R) were administered at baseline and after 12 weeks of MMT. Multivariate linear regressions and generalized estimating equations (GEEs) were used to examine the correlation between the ALDH2 genotypes and performance on the CPTs and WMS-R.
Results:
We enrolled 86 patients at baseline; 61 patients completed the end-of-study assessments. The GEE analysis showed that, after the 12 weeks of MMT, OUD patients with the ALDH2 *1/*2+*2/*2 (ALDH2 inactive) genotypes had significantly higher commission error T-scores (p = 0.03), significantly lower hit reaction time T-scores (p = 0.04), and significantly lower WMS-R visual memory index scores (p = 0.03) than did patients with the ALDH2 1 */*1 (ALDH2 active) genotype.
Conclusion
OUD patients with the ALDH2 inactive genotypes performed worse in cognitive domains of attention, impulse control, and memory than did those with the ALDH2 active genotype. We conclude that the ALDH2 gene is important in OUD and is associated with neuropsychological performance after MMT.