1.Vitisin B inhibits influenza A virus replication by multi-targeting neuraminidase and virus-induced oxidative stress.
Eun-Bin KWON ; Wei LI ; Young Soo KIM ; Buyun KIM ; Hwan-Suck CHUNG ; Younghoon GO ; Hyun-Jeong KO ; Jae-Hyoung SONG ; Young Ho KIM ; Chun Whan CHOI ; Jang-Gi CHOI
Acta Pharmaceutica Sinica B 2023;13(1):174-191
The development of drug-resistant influenza and new pathogenic virus strains underscores the need for antiviral therapeutics. Currently, neuraminidase (NA) inhibitors are commonly used antiviral drugs approved by the US Food and Drug Administration (FDA) for the prevention and treatment of influenza. Here, we show that vitisin B (VB) inhibits NA activity and suppresses H1N1 viral replication in MDCK and A549 cells. Reactive oxygen species (ROS), which frequently occur during viral infection, increase virus replication by activating the NF-κB signaling pathway, downmodulating glucose-6-phosphate dehydrogenase (G6PD) expression, and decreasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response activity. VB decreased virus-induced ROS generation by increasing G6PD expression and Nrf2 activity, and inhibiting NF-κB translocation to the nucleus through IKK dephosphorylation. In addition, VB reduced body weight loss, increased survival, decreased viral replication and the inflammatory response in the lungs of influenza A virus (IAV)-infected mice. Taken together, our results indicate that VB is a promising therapeutic candidate against IAV infection, complements existing drug limitations targeting viral NA. It modulated the intracellular ROS by G6PD, Nrf2 antioxidant response pathway, and NF-κB signaling pathway. These results demonstrate the feasibility of a multi-targeting drug strategy, providing new approaches for drug discovery against IAV infection.
2.Systemically administered neurotensin receptor agonist produces antinociception through activation of spinally projecting serotonergic neurons in the rostral ventromedial medulla
Yaqun LI ; Dong Ho KANG ; Woong Mo KIM ; Hyung Gon LEE ; Seung Hoon KIM ; Hyun Eung YOU ; Jeong Il CHOI ; Myung Ha YOON
The Korean Journal of Pain 2021;34(1):58-65
Background:
Supraspinal delivery of neurotensin (NTS), which may contribute to the effect of a systemically administered agonist, has been reported to be either pronociceptive or antinociceptive. Here, we evaluated the effects of systemically administered NTSR1 agonist in a rat model of neuropathic pain and elucidated the underlying supraspinal mechanism.
Methods:
Neuropathic pain was induced by L5 and L6 spinal nerve ligation in male Sprague–Dawley rats. The effects of intraperitoneally administered NTSR1 agonist PD 149163 was assessed using von Frey filaments. To examine the role of 5-HT neurotransmission, a serotonin (5-HT) receptor antagonist dihydroergocristine was pretreated intrathecally, and spinal microdialysis studies were performed to measure the change in extracellular level of 5-HT in response to PD 149163 administration. To investigate the supraspinal mechanism, NTSR1 antagonist 48692 was microinjected into the rostral ventromedial medulla (RVM) prior to systemic PD 149163. Additionally, the effect of intrathecal DHE on intra-RVM PD 149163 was assessed.
Results:
Intraperitoneally administered PD 149163 exhibited a dose-dependent attenuation of mechanical allodynia. This effect was partially reversed by intrathecal pretreatment with dihydroergocristine and was accompanied by an increased extracellular level of 5-HT in the spinal cord. The PD 149163-produced antinociception was also blocked by intra-RVM SB 48692. Direct injection of PD 149163 into the RVM mimicked the maximum effect of the same drug delivered intraperitoneally, which was reversed by intrathecal dihydroergocristine.
Conclusions
These observations indicate that systemically administered NTSR1 agonist produces antinociception through the NTSR1 in the RVM, activating descending serotonergic projection to release 5-HT into the spinal dorsal horn.
3.Prostaglandin D2 contributes to cisplatin-induced neuropathic pain in rats via DP2 receptor in the spinal cord
Yaqun LI ; Woong Mo KIM ; Seung Hoon KIM ; Hyun Eung YOU ; Dong Ho KANG ; Hyung Gon LEE ; Jeong Il CHOI ; Myung Ha YOON
The Korean Journal of Pain 2021;34(1):27-34
Background:
Chemotherapy-induced peripheral neuropathy (CIPN) is a major reason for stopping or changing anticancer therapy. Among the proposed pathomechanisms underlying CIPN, proinflammatory processes have attracted increasing attention. Here we assessed the role of prostaglandin D2 (PGD2 ) signaling in cisplatininduced neuropathic pain.
Methods:
CIPN was induced by intraperitoneal administration of cisplatin 2 mg/kg for 4 consecutive days using adult male Sprague-Dawley rats. PGD2 receptor DP1 and/or DP2 antagonists were administered intrathecally and the paw withdrawal thresholds were measured using von Frey filaments. Spinal expression of DP1, DP2, hematopoietic PGD synthase (H-PGDS), and lipocalin PGD synthase (L-PGDS) proteins were analyzed by western blotting.
Results:
The DP1 and DP2 antagonist AMG 853 and the selective DP2 antagonist CAY10471, but not the DP1 antagonist MK0524, significantly increased the paw withdrawal threshold compared to vehicle controls (P = 0.004 and P < 0.001, respectively). Western blotting analyses revealed comparable protein expression levels in DP1 and DP2 in the spinal cord. In the CIPN group the protein expression level of L-PGDS, but not of H-PGDS, was significantly increased compared to the control group (P < 0.001).
Conclusions
The findings presented here indicate that enhanced PGD2 signaling, via upregulation of L-PGDS in the spinal cord, contributes to mechanical allodynia via DP2 receptors in a cisplatin-induced neuropathic pain model in rats, and that a blockade of DP2 receptor activation may present a novel therapeutic target for managing CIPN.
4.Systemically administered neurotensin receptor agonist produces antinociception through activation of spinally projecting serotonergic neurons in the rostral ventromedial medulla
Yaqun LI ; Dong Ho KANG ; Woong Mo KIM ; Hyung Gon LEE ; Seung Hoon KIM ; Hyun Eung YOU ; Jeong Il CHOI ; Myung Ha YOON
The Korean Journal of Pain 2021;34(1):58-65
Background:
Supraspinal delivery of neurotensin (NTS), which may contribute to the effect of a systemically administered agonist, has been reported to be either pronociceptive or antinociceptive. Here, we evaluated the effects of systemically administered NTSR1 agonist in a rat model of neuropathic pain and elucidated the underlying supraspinal mechanism.
Methods:
Neuropathic pain was induced by L5 and L6 spinal nerve ligation in male Sprague–Dawley rats. The effects of intraperitoneally administered NTSR1 agonist PD 149163 was assessed using von Frey filaments. To examine the role of 5-HT neurotransmission, a serotonin (5-HT) receptor antagonist dihydroergocristine was pretreated intrathecally, and spinal microdialysis studies were performed to measure the change in extracellular level of 5-HT in response to PD 149163 administration. To investigate the supraspinal mechanism, NTSR1 antagonist 48692 was microinjected into the rostral ventromedial medulla (RVM) prior to systemic PD 149163. Additionally, the effect of intrathecal DHE on intra-RVM PD 149163 was assessed.
Results:
Intraperitoneally administered PD 149163 exhibited a dose-dependent attenuation of mechanical allodynia. This effect was partially reversed by intrathecal pretreatment with dihydroergocristine and was accompanied by an increased extracellular level of 5-HT in the spinal cord. The PD 149163-produced antinociception was also blocked by intra-RVM SB 48692. Direct injection of PD 149163 into the RVM mimicked the maximum effect of the same drug delivered intraperitoneally, which was reversed by intrathecal dihydroergocristine.
Conclusions
These observations indicate that systemically administered NTSR1 agonist produces antinociception through the NTSR1 in the RVM, activating descending serotonergic projection to release 5-HT into the spinal dorsal horn.
5.Prostaglandin D2 contributes to cisplatin-induced neuropathic pain in rats via DP2 receptor in the spinal cord
Yaqun LI ; Woong Mo KIM ; Seung Hoon KIM ; Hyun Eung YOU ; Dong Ho KANG ; Hyung Gon LEE ; Jeong Il CHOI ; Myung Ha YOON
The Korean Journal of Pain 2021;34(1):27-34
Background:
Chemotherapy-induced peripheral neuropathy (CIPN) is a major reason for stopping or changing anticancer therapy. Among the proposed pathomechanisms underlying CIPN, proinflammatory processes have attracted increasing attention. Here we assessed the role of prostaglandin D2 (PGD2 ) signaling in cisplatininduced neuropathic pain.
Methods:
CIPN was induced by intraperitoneal administration of cisplatin 2 mg/kg for 4 consecutive days using adult male Sprague-Dawley rats. PGD2 receptor DP1 and/or DP2 antagonists were administered intrathecally and the paw withdrawal thresholds were measured using von Frey filaments. Spinal expression of DP1, DP2, hematopoietic PGD synthase (H-PGDS), and lipocalin PGD synthase (L-PGDS) proteins were analyzed by western blotting.
Results:
The DP1 and DP2 antagonist AMG 853 and the selective DP2 antagonist CAY10471, but not the DP1 antagonist MK0524, significantly increased the paw withdrawal threshold compared to vehicle controls (P = 0.004 and P < 0.001, respectively). Western blotting analyses revealed comparable protein expression levels in DP1 and DP2 in the spinal cord. In the CIPN group the protein expression level of L-PGDS, but not of H-PGDS, was significantly increased compared to the control group (P < 0.001).
Conclusions
The findings presented here indicate that enhanced PGD2 signaling, via upregulation of L-PGDS in the spinal cord, contributes to mechanical allodynia via DP2 receptors in a cisplatin-induced neuropathic pain model in rats, and that a blockade of DP2 receptor activation may present a novel therapeutic target for managing CIPN.
6.In Vivo Bioreactor Using Cellulose Membrane Benefit Engineering Cartilage by Improving the Chondrogenesis and Modulating the Immune Response
Xue Guang LI ; In-Su PARK ; Byung Hyune CHOI ; Ung-Jin KIM ; Byoung-Hyun MIN
Tissue Engineering and Regenerative Medicine 2020;17(2):165-181
BACKGROUND:
To regenerate tissue-engineered cartilage as a source of material for the restoration of cartilage defects, we used a human fetal cartilage progenitor cell pellet to improve chondrogenesis and modulation of the immune response in an In Vivo bioreactor (IVB) system.
METHODS:
IVB was buried subcutaneously in the host and then implanted into a cartilage defect. The IVB was composed of a silicone tube and a cellulose nano pore-sized membrane. First, fetal cartilage progenitor cell pellets were cultured in vitro for 3 days, then cultured in vitro, subcutaneously, and in an IVB for 3 weeks. First, the components and liquidity of IVB fluid were evaluated, then the chondrogenesis and immunogenicity of the pellets were evaluated using gross observation, cell viability assays, histology, biochemical analysis, RT-PCR, and Western blots. Finally, cartilage repair and synovial inflammation were evaluated histologically.
RESULTS:
The fluid color and transparency of the IVB were similar to synovial fluid (SF) and the components were closer to SF than serum. The IVB system not only promoted the synthesis of cartilage matrix and maintained the cartilage phenotype, it also delayed calcification compared to the subcutaneously implanted pellets.
CONCLUSION
The IVB adopted to study cell differentiation was effective in preventing host immune rejection.
7.A retrospective study of theophylline-based therapy with tracheal collapse in small-breed dogs: 47 cases (2013–2017)
So Young JEUNG ; Sang June SOHN ; Ju Hyun AN ; Hyung Kyu CHAE ; Qiang LI ; Mincheol CHOI ; Junghee YOON ; Woo Jin SONG ; Hwa Young YOUN
Journal of Veterinary Science 2019;20(5):e57-
Theophylline acts as a bronchodilator and has an anti-inflammatory effect. In addition, theophylline can be applied in patients where there are concerns regarding the side-effects of corticosteroids. This retrospective case series evaluated theophylline-based therapy in tracheal collapse (TC) canine patients. Forty-seven dogs with TC that received theophylline-based therapy during 2013–2017 were investigated. A fluoroscopic examination was performed to diagnose and grade TC. Theophylline was prescribed (7.5–30 mg/kg PO q12h) and the theophylline serum concentrations were measured. Coughing was assessed using a coughing scoring scale. The mean coughing score decreased after the theophylline-based therapy compared with that observed before treatment. Clinical improvements were observed in 46/47 patients (97.9%). As the intrathoracic TC grading increased, the final theophylline dosage also increased (p value 0.019). The symptom-free period (SFP) with therapy was 189.7 ± 194.45 days (range, 0–720 days) and there was no statistically significant correlation between the SFP and age, sex, or TC grade on fluoroscopy. Although theophylline has generally been used as a third-line treatment, it was used as the main treatment in this study and most patients showed improvements. Dogs have a wider therapeutic index of serum concentrations than humans, and any undesirable effects were easily overcome. With further research, this therapy may prove to be a useful approach, but its safety for long-term use in the treatment of canine TC patients needs to be established.
Adrenal Cortex Hormones
;
Animals
;
Cough
;
Dogs
;
Fluoroscopy
;
Humans
;
Retrospective Studies
;
Theophylline
8.Erratum: A retrospective study of theophylline-based therapy with tracheal collapse in small-breed dogs: 47 cases (2013–2017)
So Young JEUNG ; Sang June SOHN ; Ju Hyun AN ; Hyung Kyu CHAE ; Qiang LI ; Mincheol CHOI ; Junghee YOON ; Woo Jin SONG ; Hwa Young YOUN
Journal of Veterinary Science 2019;20(6):e66-
The authors regret that there were errors in funding section.
9.Relationship between Pericytes and Endothelial Cells in Retinal Neovascularization: A Histological and Immunofluorescent Study of Retinal Angiogenesis
Se Hyun CHOI ; Minhwan CHUNG ; Sung Wook PARK ; Noo Li JEON ; Jeong Hun KIM ; Young Suk YU
Korean Journal of Ophthalmology 2018;32(1):70-76
PURPOSE: To evaluate the relationship between pericytes and endothelial cells in retinal neovascularization through histological and immunofluorescent studies. METHODS: C57BL/6J mice were exposed to hyperoxia from postnatal day (P) 7 to P12 and were returned to room air at P12 to induce a model of oxygen-induced retinopathy (OIR). The cross sections of enucleated eyes were processed with hematoxylin and eosin. Immunofluorescent staining of pericytes, endothelial cells, and N-cadherin was performed. Microfluidic devices were fabricated out of polydimethylsiloxane using soft lithography and replica molding. Human retinal microvascular endothelial cells, human brain microvascular endothelial cells, human umbilical vein endothelial cells and human placenta pericyte were mixed and co-cultured. RESULTS: Unlike the three-layered vascular plexus found in retinal angiogenesis of a normal mouse, angiogenesis in the OIR model is identified by the neovascular tuft extending into the vitreous. Neovascular tufts and the three-layered vascular plexus were both covered with pericytes in the OIR model. In this pathologic vascularization, N-cadherin, known to be crucial intercellular adhesion molecule, was also present. Further evaluation using the microfluidic in vitro model, successfully developed a microvascular network of endothelial cells covered with pericytes, mimicking normal retinal angiogenesis within 6 days. CONCLUSIONS: Pericytes covering endothelial cells were observed not only in vasculature of normal retina but also pathologic neovascularization of OIR mouse at P17. Factors involved in the endothelial cell-pericyte interaction can be evaluated as an attractive novel treatment target. These future studies can be performed using microfluidic systems, which can shorten the study time and provide three-dimensional structural evaluation.
Animals
;
Brain
;
Cadherins
;
Endothelial Cells
;
Eosine Yellowish-(YS)
;
Fungi
;
Hematoxylin
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Hyperoxia
;
In Vitro Techniques
;
Lab-On-A-Chip Devices
;
Mice
;
Microfluidics
;
Microvessels
;
Neovascularization, Pathologic
;
Pericytes
;
Placenta
;
Retina
;
Retinal Neovascularization
;
Retinaldehyde
10.Transradial versus transfemoral intervention in ST-segment elevation myocardial infarction patients in Korean population.
Hu LI ; Seung Woon RHA ; Byoung Geol CHOI ; Min Suk SHIM ; Se Yeon CHOI ; Cheol Ung CHOI ; Eung Ju KIM ; Dong Joo OH ; Byung Ryul CHO ; Moo Hyun KIM ; Doo Il KIM ; Myung Ho JEONG ; Sang Yong YOO ; Sang Sik JEONG ; Byung Ok KIM ; Min Su HYUN ; Young Jin YOUN ; Junghan YOON
The Korean Journal of Internal Medicine 2018;33(4):716-726
BACKGROUND/AIMS: Transradial intervention (TRI) is becoming the preferred method over transfemoral intervention (TFI) because TRI is associated with lower incidence of major bleeding and vascular complications. However, there has been limited published data regarding the clinical outcomes of TRI versus TFI in Korean patients with ST-elevation myocardial infarction (STEMI). METHODS: A total of 689 consecutive STEMI patients who underwent primary percutaneous coronary intervention (PCI) with drug-eluting stents (DESs) from January to December of 2009 at nine university hospitals were enrolled in this study. Mid-term angiographic and 12-month cumulative clinical outcomes of the TRI group (n = 220, 31.9%) were compared to those of the TFI group (n = 469, 28.1%). RESULTS: After propensity score matching, in-hospital complications and the 12-month major clinical outcomes during follow-up in the two groups were similar to each other. However, the incidence rates of repeat revascularization (6.4% vs. 0.5%, p = 0.003), target vessel revascularization (6.4% vs. 0.5%, p = 0.003), and major adverse cardiac events (MACE; 11.6% vs. 4.6%, p = 0.018) in the TFI group were higher than those in the TRI group during the 12-month of follow-up. CONCLUSIONS: In our study, TRI in STEMI patients undergoing primary PCI with DESs was associated with lower incidence of access site hematoma, 12-month repeat revascularization, and MACE compared to TFI. Therefore, TRI might play an important role in reducing bleeding complications while improving major clinical outcomes in STEMI patients undergoing primary PCI with DESs.
Drug-Eluting Stents
;
Follow-Up Studies
;
Hematoma
;
Hemorrhage
;
Hospitals, University
;
Humans
;
Incidence
;
Methods
;
Myocardial Infarction*
;
Percutaneous Coronary Intervention
;
Propensity Score

Result Analysis
Print
Save
E-mail