1.Use of real-time quantitative PCR to identify high expressed genes in head and neck squamous cell carcinoma cell lines.
Yong Gyoo LEE ; So Young CHUN ; Hae Ahm LEE ; Yoon Kyung SOHN ; Ku Seong KANG ; Joung Ok KIM ; Sang Mo YUN ; Jung Wan KIM ; Hyun Jung JANG
Journal of the Korean Association of Oral and Maxillofacial Surgeons 2006;32(1):69-75
Head and neck squamous cell carcinoma(HNSCC) is the sixth most common cancer among men in the developed world affecting the tongue, pharynx, larynx and oral cavity. HNSCC is thought to represent a multistep process whereby carcinogen exposure leads to genetic instability in the tissue and accumulation of specific genetic events, which result in dysregulation of proliferation, differentiation, and cell loss and the acquisition of invasive capacity. Despite therapeutic and diagnostic progress in oncology during the past decades, the prognosis of HNSCC remains poor. Thus it seems that finding a biological tumor markers which will increase the early diagnosis and treatment monitoring rates, is of paramount importance in respect to improving prognosis. In an effort to identify gene expression signatures that may serve as biomarkers, this study several genes were selected, such as H3,3A, S100A7, UCHL1, GSTP1, PAI-2, PLK, TGFbeta1 and bFGF, and used 7 HNSCC cell lines that were established various anatomical sites, and also 17 other cancer cell lines were used for control group using real-time quantitative RT-PCR and immunocytochemical analysis with a monoclonal antibody. In this study, S100A7 showed a clearly restricted occurrence in tongue originated cell line, and GSTP1 expression level in the pharynx originated cell line was very increased, relative to corresponding other cell lines. These results suggest that S100A7 and GSTP1 genes' expression can occur during tongue and pharynx originated head and neck tumorigenesis and that genetic change is an important driving force in the carcinogenesis process. This data indicate that S100A7 and GSTP1 expression pattern in HNSCC reflect both diagnostic clue and biological marker. And this is provides a foundation for the development of site-specific diagnostic strategies and treatments for HNSCC.
Biomarkers, Tumor
;
Carcinogenesis
;
Carcinoma, Squamous Cell*
;
Cell Line*
;
Early Diagnosis
;
Head*
;
Humans
;
Larynx
;
Male
;
Mouth
;
Neck*
;
Pharynx
;
Plasminogen Activator Inhibitor 2
;
Polymerase Chain Reaction*
;
Prognosis
;
Tongue
;
Transcriptome
2.A known expressed sequence tag, BM742401, is a potent lincRNA inhibiting cancer metastasis.
Seong Min PARK ; Sung Joon PARK ; Hee Jin KIM ; Oh Hyung KWON ; Tae Wook KANG ; Hyun Ahm SOHN ; Seon Kyu KIM ; Seung MOO NOH ; Kyu Sang SONG ; Se Jin JANG ; Yong SUNG KIM ; Seon Young KIM
Experimental & Molecular Medicine 2013;45(7):e31-
Long intergenic non-coding RNAs (lincRNAs) have historically been ignored in cancer biology. However, thousands of lincRNAs have been identified in mammals using recently developed genomic tools, including microarray and high-throughput RNA sequencing (RNA-seq). Several of the lincRNAs identified have been well characterized for their functions in carcinogenesis. Here we performed RNA-seq experiments comparing gastric cancer with normal tissues to find differentially expressed transcripts in intergenic regions. By analyzing our own RNA-seq and public microarray data, we identified 31 transcripts, including a known expressed sequence tag, BM742401. BM742401 was downregulated in cancer, and its downregulation was associated with poor survival in gastric cancer patients. Ectopic overexpression of BM742401 inhibited metastasis-related phenotypes and decreased the concentration of extracellular MMP9. These results suggest that BM742401 is a potential lincRNA marker and therapeutic target.
Animals
;
DNA, Intergenic/genetics
;
Expressed Sequence Tags/*metabolism
;
Extracellular Space/metabolism
;
Gene Expression Profiling
;
Gene Expression Regulation, Neoplastic
;
Genetic Predisposition to Disease
;
Humans
;
Male
;
Matrix Metalloproteinase 9/metabolism
;
Mice
;
Mice, Inbred C57BL
;
Multivariate Analysis
;
Neoplasm Metastasis
;
Neoplasm Staging
;
Phenotype
;
Proportional Hazards Models
;
RNA, Long Noncoding/*genetics/metabolism
;
RNA, Messenger/genetics/metabolism
;
Reproducibility of Results
;
Stomach Neoplasms/*genetics/*pathology
;
Survival Analysis
3.DNA methylome analysis reveals epigenetic alteration of complement genes in advanced metabolic dysfunction-associated steatotic liver disease
Amal MAGDY ; Hee-Jin KIM ; Hanyong GO ; Jun Min LEE ; Hyun Ahm SOHN ; Keeok HAAM ; Hyo-Jung JUNG ; Jong-Lyul PARK ; Taekyeong YOO ; Eun-Soo KWON ; Dong Hyeon LEE ; Murim CHOI ; Keon Wook KANG ; Won KIM ; Mirang KIM ;
Clinical and Molecular Hepatology 2024;30(4):824-844
Background/Aims:
Blocking the complement system is a promising strategy to impede the progression of metabolic dysfunction–associated steatotic liver disease (MASLD). However, the interplay between complement and MASLD remains to be elucidated. This comprehensive approach aimed to investigate the potential association between complement dysregulation and the histological severity of MASLD.
Methods:
Liver biopsy specimens were procured from a cohort comprising 106 Korean individuals, which included 31 controls, 17 with isolated steatosis, and 58 with metabolic dysfunction–associated steatohepatitis (MASH). Utilizing the Infinium Methylation EPIC array, thorough analysis of methylation alterations in 61 complement genes was conducted. The expression and methylation of nine complement genes in a murine MASH model were examined using quantitative RT-PCR and pyrosequencing.
Results:
Methylome and transcriptome analyses of liver biopsies revealed significant (p<0.05) hypermethylation and downregulation of C1R, C1S, C3, C6, C4BPA<, and SERPING1, as well as hypomethylation (p<0.0005) and upregulation (p<0.05) of C5AR1, C7, and CD59, in association with the histological severity of MASLD. Furthermore, DNA methylation and the relative expression of nine complement genes in a MASH diet mouse model aligned with human data.
Conclusions
Our research provides compelling evidence that epigenetic alterations in complement genes correlate with MASLD severity, offering valuable insights into the mechanisms driving MASLD progression, and suggests that inhibiting the function of certain complement proteins may be a promising strategy for managing MASLD.
4.DNA methylome analysis reveals epigenetic alteration of complement genes in advanced metabolic dysfunction-associated steatotic liver disease
Amal MAGDY ; Hee-Jin KIM ; Hanyong GO ; Jun Min LEE ; Hyun Ahm SOHN ; Keeok HAAM ; Hyo-Jung JUNG ; Jong-Lyul PARK ; Taekyeong YOO ; Eun-Soo KWON ; Dong Hyeon LEE ; Murim CHOI ; Keon Wook KANG ; Won KIM ; Mirang KIM ;
Clinical and Molecular Hepatology 2024;30(4):824-844
Background/Aims:
Blocking the complement system is a promising strategy to impede the progression of metabolic dysfunction–associated steatotic liver disease (MASLD). However, the interplay between complement and MASLD remains to be elucidated. This comprehensive approach aimed to investigate the potential association between complement dysregulation and the histological severity of MASLD.
Methods:
Liver biopsy specimens were procured from a cohort comprising 106 Korean individuals, which included 31 controls, 17 with isolated steatosis, and 58 with metabolic dysfunction–associated steatohepatitis (MASH). Utilizing the Infinium Methylation EPIC array, thorough analysis of methylation alterations in 61 complement genes was conducted. The expression and methylation of nine complement genes in a murine MASH model were examined using quantitative RT-PCR and pyrosequencing.
Results:
Methylome and transcriptome analyses of liver biopsies revealed significant (p<0.05) hypermethylation and downregulation of C1R, C1S, C3, C6, C4BPA<, and SERPING1, as well as hypomethylation (p<0.0005) and upregulation (p<0.05) of C5AR1, C7, and CD59, in association with the histological severity of MASLD. Furthermore, DNA methylation and the relative expression of nine complement genes in a MASH diet mouse model aligned with human data.
Conclusions
Our research provides compelling evidence that epigenetic alterations in complement genes correlate with MASLD severity, offering valuable insights into the mechanisms driving MASLD progression, and suggests that inhibiting the function of certain complement proteins may be a promising strategy for managing MASLD.
5.DNA methylome analysis reveals epigenetic alteration of complement genes in advanced metabolic dysfunction-associated steatotic liver disease
Amal MAGDY ; Hee-Jin KIM ; Hanyong GO ; Jun Min LEE ; Hyun Ahm SOHN ; Keeok HAAM ; Hyo-Jung JUNG ; Jong-Lyul PARK ; Taekyeong YOO ; Eun-Soo KWON ; Dong Hyeon LEE ; Murim CHOI ; Keon Wook KANG ; Won KIM ; Mirang KIM ;
Clinical and Molecular Hepatology 2024;30(4):824-844
Background/Aims:
Blocking the complement system is a promising strategy to impede the progression of metabolic dysfunction–associated steatotic liver disease (MASLD). However, the interplay between complement and MASLD remains to be elucidated. This comprehensive approach aimed to investigate the potential association between complement dysregulation and the histological severity of MASLD.
Methods:
Liver biopsy specimens were procured from a cohort comprising 106 Korean individuals, which included 31 controls, 17 with isolated steatosis, and 58 with metabolic dysfunction–associated steatohepatitis (MASH). Utilizing the Infinium Methylation EPIC array, thorough analysis of methylation alterations in 61 complement genes was conducted. The expression and methylation of nine complement genes in a murine MASH model were examined using quantitative RT-PCR and pyrosequencing.
Results:
Methylome and transcriptome analyses of liver biopsies revealed significant (p<0.05) hypermethylation and downregulation of C1R, C1S, C3, C6, C4BPA<, and SERPING1, as well as hypomethylation (p<0.0005) and upregulation (p<0.05) of C5AR1, C7, and CD59, in association with the histological severity of MASLD. Furthermore, DNA methylation and the relative expression of nine complement genes in a MASH diet mouse model aligned with human data.
Conclusions
Our research provides compelling evidence that epigenetic alterations in complement genes correlate with MASLD severity, offering valuable insights into the mechanisms driving MASLD progression, and suggests that inhibiting the function of certain complement proteins may be a promising strategy for managing MASLD.
6.DNA methylome analysis reveals epigenetic alteration of complement genes in advanced metabolic dysfunction-associated steatotic liver disease
Amal MAGDY ; Hee-Jin KIM ; Hanyong GO ; Jun Min LEE ; Hyun Ahm SOHN ; Keeok HAAM ; Hyo-Jung JUNG ; Jong-Lyul PARK ; Taekyeong YOO ; Eun-Soo KWON ; Dong Hyeon LEE ; Murim CHOI ; Keon Wook KANG ; Won KIM ; Mirang KIM ;
Clinical and Molecular Hepatology 2024;30(4):824-844
Background/Aims:
Blocking the complement system is a promising strategy to impede the progression of metabolic dysfunction–associated steatotic liver disease (MASLD). However, the interplay between complement and MASLD remains to be elucidated. This comprehensive approach aimed to investigate the potential association between complement dysregulation and the histological severity of MASLD.
Methods:
Liver biopsy specimens were procured from a cohort comprising 106 Korean individuals, which included 31 controls, 17 with isolated steatosis, and 58 with metabolic dysfunction–associated steatohepatitis (MASH). Utilizing the Infinium Methylation EPIC array, thorough analysis of methylation alterations in 61 complement genes was conducted. The expression and methylation of nine complement genes in a murine MASH model were examined using quantitative RT-PCR and pyrosequencing.
Results:
Methylome and transcriptome analyses of liver biopsies revealed significant (p<0.05) hypermethylation and downregulation of C1R, C1S, C3, C6, C4BPA<, and SERPING1, as well as hypomethylation (p<0.0005) and upregulation (p<0.05) of C5AR1, C7, and CD59, in association with the histological severity of MASLD. Furthermore, DNA methylation and the relative expression of nine complement genes in a MASH diet mouse model aligned with human data.
Conclusions
Our research provides compelling evidence that epigenetic alterations in complement genes correlate with MASLD severity, offering valuable insights into the mechanisms driving MASLD progression, and suggests that inhibiting the function of certain complement proteins may be a promising strategy for managing MASLD.