4.Interpretation and Use of Natriuretic Peptides in Non-Congestive Heart Failure Settings.
Shih Hung TSAI ; Yen Yue LIN ; Shi Jye CHU ; Ching Wang HSU ; Shu Meng CHENG
Yonsei Medical Journal 2010;51(2):151-163
Natriuretic peptides (NPs) have been found to be useful markers in differentiating acute dyspneic patients presenting to the emergency department (ED) and emerged as potent prognostic markers for patients with congestive heart failure (CHF). The best-established and widely used clinical application of BNP and NT-proBNP testing is for the emergent diagnosis of CHF in patients presenting with acute dyspnea. Nevertheless, elevated NPs levels can be found in many circumstances involving left ventricular (LV) dysfunction or hypertrophy; right ventricular (RV) dysfunction secondary to pulmonary diseases; cardiac inflammatory or infectious diseases; endocrinology diseases and high output status without decreased LV ejection fraction. Even in the absence of significant clinical evidence of volume overload or LV dysfunction, markedly elevated NP levels can be found in patients with multiple comorbidities with a certain degree of prognostic value. Potential clinical applications of NPs are expanded accompanied by emerging reports regarding screening the presence of secondary cardiac dysfunction; monitoring the therapeutic responses, risk stratifications and providing prognostic values in many settings. Clinicians need to have expanded knowledge regarding the interpretation of elevated NPs levels and potential clinical applications of NPs. Clinicians should recognize that currently the only reasonable application for routine practice is limited to differentiation of acute dyspnea, rule-out-diagnostic-tests, monitoring of therapeutic responses and prognosis of acute or decompensated CHF. The rationales as well the potential applications of NPs in these settings are discussed in this review article.
Acute Coronary Syndrome/metabolism
;
Arrhythmias, Cardiac/metabolism
;
Heart Failure/*metabolism
;
Humans
;
Hypertension, Pulmonary/metabolism
;
Natriuretic Peptides/*metabolism
;
Sepsis/metabolism
6.Involvement of sympathetic nervous system in the pathogenesis of hypertension.
Wenxi JIANG ; Xue-zhi ZHANG ; Ming-liang GU
Chinese Journal of Medical Genetics 2013;30(5):565-569
Sustained activation of sympathetic nervous system in response to stimulation of a wide variety of stress factors is an independent risk factor for the development of essential hypertension. Adrenal hormone biosynthesis pathway as an important part of the sympathetic nervous system consists of hormones, neurotransmitters, receptors, and a variety of synthases and invertases. In this article, we have systematically reviewed research progresses made in elucidating the interactions between genes of the adrenal hormone biosynthesis pathway and stress factors in the pathogenesis of essential hypertension.
Animals
;
Hormones
;
metabolism
;
Humans
;
Hypertension
;
genetics
;
metabolism
;
pathology
;
Sympathetic Nervous System
;
metabolism
;
pathology
7.MicroRNA and hypertension.
Lian DUAN ; Xing-Jiang XIONG ; Jie WANG
China Journal of Chinese Materia Medica 2014;39(3):397-401
MicroRNA(miRNA) is involved in virtually all biologic processes, including cellular proliferation, apoptosis, and differentiation. Thus, miRNA deregulation often results in impaired cellular function and disease development, so miRNAs have potential therapeutic relevance. The elucidation of these processes regulated by miRNAs and the identification of novel miRNA targets in the pathogenesis of hypertension is a highly valuable and exciting strategy that may eventually led to the development of novel treatment approaches for hypertension. Several mechanisms have been implicated in the pathogenesis of hypertension: overactivation of therenin-angiotensin-aldosterone system (RAAS), dysfunction of the vascular endothelium, damnification of vascular smooth muscle. To maintain and restore target organ expression of miRNA stable may be a new strategy for treatment of hypertension. The article reviews pathogenesis of miRNA and hypertension, researches of miRNAs as biomarker and therapeutic target, discusses advances in miRNA-based approaches that may be important in treating hypertension.
Animals
;
Biomarkers
;
metabolism
;
Humans
;
Hypertension
;
drug therapy
;
genetics
;
metabolism
;
MicroRNAs
;
genetics
;
metabolism
;
Molecular Targeted Therapy
8.Imbalance of endogenous homocysteine and hydrogen sulfide metabolic pathway in essential hypertensive children.
Li CHEN ; Sumou INGRID ; Ya-guang DING ; Ying LIU ; Jian-guang QI ; Chao-shu TANG ; Jun-bao DU
Chinese Medical Journal 2007;120(5):389-393
BACKGROUNDHypertension is a common disease of the cardiovascular system. So far, the pathogenesis of primary hypertension remains unclear. The elaboration of its pathogenesis is an important topic in the field which calls for urgent resolution. The aim of this study was to probe into the metabolic imbalance of homocysteine (Hcy) and hydrogen sulfide (H(2)S) in children with essential hypertension, and its significance in the pathogenesis of essential hypertension.
METHODSTwenty-five children with essential hypertension and 30 healthy children with normal blood pressure were enrolled in the study. The medical history was investigated and a physical examination was conducted on the subjects. Plasma Hcy content was examined by fluorescence polarization immunoassay (FPIA). The plasma H(2)S level was detected by a modified method with a sulfide electrode. Data were presented as mean +/- standard deviation. The t test was applied to the mean values of both groups. Pearson linear correlation analysis was applied to the plasma Hcy and H(2)S as well as to the systolic pressure against the plasma H(2)S/Hcy ratio.
RESULTSPlasma Hcy, an intermittent metabolite of the endogenous methionine pathway, was markedly increased but plasma H(2)S, a final product of this pathway was significantly decreased in hypertensive cases when compared with normal subjects ((Hcy: (12.68 +/- 9.69) micromol/L vs (6.62 +/- 4.79) micromol/L (t = 2.996, P < 0.01); H(2)S: (51.93 +/- 6.01) micromol/L vs (65.70 +/- 5.50) micromol/L) (t = -8.670, P < 0.01)). The ratio of plasma H(2)S/Hcy in children with hypertension was 5.83 +/- 2.91, while that of the control group was 11.60 +/- 3.30, and the difference is significant with a t = -6.610 and P < 0.01. A negative correlation existed between plasma Hcy and H(2)S concentrations, r = -0.379, P < 0.05. And a negative correlation was found between systolic blood pressure and the plasma H(2)S/Hcy ratio, r = -0.687, P < 0.05.
CONCLUSIONThere was a metabolic imbalance of homocysteine and hydrogen sulfide in essential hypertensive children.
Adolescent ; Child ; Female ; Homocysteine ; metabolism ; Humans ; Hydrogen Sulfide ; metabolism ; Hypertension ; etiology ; metabolism ; physiopathology ; Male ; Systole
9.Adequate hydrogen sulfide, healthy circulation.
Jun-Bao DU ; Stella CHEN ; Hong-Fang JIN ; Chao-Shu TANG
Chinese Medical Journal 2011;124(21):3443-3444
10.Changes of adrenomedullin 2/intermedin in the lung of rats with chronic hypoxic pulmonary hypertension.
Xiao-fang FAN ; Ping HUANG ; Yong-sheng GONG ; Xiao-mai WU ; Liang-gang HU ; Li-xian TIAN ; Chao-shu TANG ; Yong-zheng PANG
Chinese Journal of Applied Physiology 2007;23(4):467-471
AIMTo investigate the changes and probable roles of adrenomedullin2/intermedin (AIDM2/IMD), a novel micromolecular bioactive peptide, in the lungs of rats with chronic hypoxic pulmonary hypertension.
METHODSTwenty male SD rats were randomly divided into normal control group (NC) and normobaric hypoxia group (4H). The protein levels of ADM and ADM2/IMD) in the plasma and lung were measured by radioimmunoassay and immunohistochemistry. The mRNA expressions of ADM, ADM2/IMD and their receptors C (RLR, RAMP1, RAMP2 and RAMP3 in the lung tissue were determined by reverse transcription-polymerase chain reaction (RT-PCR).
RESULTS(1) The rat model of chronic pulmonary hypertension was confirmed by the increased mean pulmonary arterial pressure (mPAP) and weight ratio of right ventricle to left ventricle plus septum [RV/(LV + S)] in 4H group compared to NC group. (2) The concentrations of ADM in the plasma and lung homogenate of 4H group were 2.3 and 3.2 folds of NC group, respectively (all P < 0.01). The levels of ADM2/IMD were higher 89.6% and 45.0% in the plasma and lung homogenate of 4H group than those of NC group (respectively, P < 0.01, P < 0.05). (3) The mRNA expressions of ADM2/IMD and ADM in the lung of 4H group were up-regulated (respectively, P < 0.01, P < 0.05 vs. NC group). The expressions of CRLR and RAMP1 mRNAs were down-regulated (all P < 0.01 vs. NC group), while the levels of RAMP2 and RAMP3 mRNAs were no significant difference between the two groups. (4) The strong ADM2/IMD immunostaining was detected in the endothelial and adventitial cells of the rat pulmonary arteriole.
CONCLUSIONADM2/IMD, like its paralog ADM, might be closely related to the chronic hypoxic pulmonary hypertension in rats. The disorders of the gene expression and/or the synthesis and metabolism of ADM2/IMD and its receptor CRLR/RAMP1 possibly take part in the pathogenesis of chronic hypoxic pulmonary hypertension in rats.
Adrenomedullin ; metabolism ; Animals ; Hypertension, Pulmonary ; etiology ; metabolism ; Hypoxia ; complications ; metabolism ; Lung ; metabolism ; Male ; Neuropeptides ; metabolism ; Rats ; Rats, Sprague-Dawley