1.Angiotensin-(1-7) improves endothelium-dependent vasodilation in rats with monocrotaline-induced pulmonary arterial hypertension.
Xuan-Xuan LIU ; Ai-Dong CHEN ; Yan PAN ; Feng ZHANG ; Zhen-Bao QI ; Nan CAO ; Ying HAN
Acta Physiologica Sinica 2023;75(4):497-502
In this study, we used a rat model of pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT) to investigate the role and mechanism of angiotensin (Ang)-(1-7) in regulating pulmonary artery diastolic function. Three weeks after subcutaneous injection of MCT or normal saline, the right ventricular systolic pressure (RVSP) and right ventricular hypertrophy index (RVHI) of rats were detected using a right heart catheter. Vascular endothelium-dependent relaxation was evaluated by acetylcholine (ACh)-induced vasodilation. The relaxation function of vascular smooth muscle was evaluated by sodium nitroprusside (SNP)-induced vasodilation. Human pulmonary artery endothelial cells (HPAECs) were incubated with Ang-(1-7) to measure nitric oxide (NO) release levels. The results showed that compared with control rats, RVSP and RVHI were significantly increased in the MCT-PAH rats, and both ACh or SNP-induced vasodilation were worsened. Incubation of pulmonary artery of MCT-PAH rats with Ang-(1-7) (1 × 10-9-1 × 10-4 mol/L) caused significant vaso-relaxation. Pre-incubation of Ang-(1-7) in the pulmonary artery of MCT-PAH rats significantly improved ACh-induced endothelium-dependent relaxation, but had no significant effect on SNP-induced endothelium-independent relaxation. In addition, Ang-(1-7) treatment significantly increased NO levels in HPAECs. The Mas receptor antagonist A-779 inhibited the effects of Ang-(1-7) on endothelium-dependent relaxation and NO release from endothelial cells. The above results demonstrate that Ang-(1-7) promotes the release of NO from endothelial cells by activating Mas receptor, thereby improving the endothelium-dependent relaxation function of PAH pulmonary arteries.
Rats
;
Humans
;
Animals
;
Vasodilation
;
Pulmonary Arterial Hypertension
;
Monocrotaline/toxicity*
;
Rats, Sprague-Dawley
;
Hypertension, Pulmonary/chemically induced*
;
Endothelial Cells
;
Pulmonary Artery
;
Endothelium
;
Acetylcholine/pharmacology*
;
Nitroprusside/pharmacology*
2.The effect of Yiqi Wenyang Huoxue Huatan Fang on hypoxia-hypercarbia induced pulmonary hypertension and its mechanism.
Cong-Cong ZHANG ; Jing-Jing ZHANG ; Jun-Hao CHEN ; Yuan-Ling WU ; Dan-Na HUANG ; Yong-Yue DAI ; Wan-Tie WANG
Chinese Journal of Applied Physiology 2018;34(5):408-413
OBJECTIVE:
To investigate the effect of Yiqi Wenyang Huoxue Huatan Fang (YWHHF) on alleviating hypoxia-hypercarbia pulmonary hypertension by inhibiting endothelial-mesenchymal transition (EndoMT) BMP-7/Smads pathway.
METHODS:
Fifty male healthy SD rats of clean grede, weighting (180~220) g, were randomly divided into 5 groups (=10):normoxia group (N), hypoxia-hypercarbia group (HH); YWHHF high dose group (YH), middle dose group (YM) and low dose group (YL). The rats in N group were kept in normal oxygen environment, the remaining four groups were intermittently exposed to hypoxia-hypercarbia environment (9%~11% O, 5%~6% CO) for 4 weeks, 6 days a week, 8 hours per day. The rats in YH, YM, YL groups were received YWHHF gavage in a dosageof 0.6, 0.3, 0.15g/kg respectively (3 ml/kg),the rats in N and HH groups were received equal volume of normal saline. After 4 weeks, the mean pulmonary arterial pressure(mPAP) was detected,the right ventricular free wall and left ventricle plus ventricular septum were isolated to determine the right ventricular hypertrophy index. Lung ultrastructural changes were surveyed under an electronic microscopy, the changes of pulmonary artery structure surveyed by immunofluorescence, the mRNA levels of alpha-smooth muscle actin (α-SMA)、platelet endothelial cell adhesion molecule-1 (CD31)、bone morphogenetic protein-7 (BMP-7)、drosophila mothers against decapentaplegic protein1/5/8 (Smad1/5/8) were detected by RT-PCR, and the protein levels of α-SMA、CD31、BMP-7、p-Smad1/5/8 and Smad1/5/8 were detected by Western blot.
RESULTS:
Compared with N group, mPAP and the right ventricular hypertrophy index were increased,some significant injuries also were discovered under microscopic observation,the mRNA and protein expression of α-SMA was increased, and the mRNA expressions of CD31、BMP-7、Smad1/5/8 were decreased in the other four groups, the protein expressions of CD31、BMP-7、p-Smad1/5/8 were decreased(<0.05). Compared with HH group, the above changes in YH、YM、YL groups were all improved (<0.05).
CONCLUSIONS
YWHHF can inhibit EndoMT to alleviate pulmonary hypertension, and the mechanism may be related to the promotion of the expression of BMP-7/Smads pathway.
Animals
;
Hypercapnia
;
Hypertension, Pulmonary
;
chemically induced
;
Hypoxia
;
Male
;
Pulmonary Artery
;
Rats
;
Rats, Sprague-Dawley
3.Calpain mediated pulmonary vascular remodeling in hypoxia induced pulmonary hypertension.
Weifang ZHANG ; Tiantian ZHU ; Aizhen XIONG ; Xiaoyue GE ; Ruilai XU ; Shegui LU ; Changping HU
Journal of Central South University(Medical Sciences) 2016;41(9):929-936
OBJECTIVE:
To explore the role of calpain in pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension and the underlying mechanisms.
METHODS:
Sprague-Dawley rats were randomly divided into the hypoxia group and the normoxia control group. Right ventricular systolic pressure (RVSP) and mean pulmonary artery pressure (mPAP) were monitored by a method with right external jugular vein cannula. Right ventricular hypertrophy index was presented as the ratio of right ventricular weight to left ventricular weight (left ventricle plus septum weight). Levels of calpain-1, -2 and -4 mRNA in pulmonary artery were determined by real-time PCR. Levels of calpain-1, -2 and -4 protein were determined by Western blot. Primary rat pulmonary arterial smooth muscle cells (PASMCs) were divided into 4 groups: a normoxia control group, a normoxia+MDL28170 group, a hypoxia group and a hypoxia+MDL28170 group. Cell proliferation was detected by MTS and flow cytometry. Levels of Ki-67 and proliferating cell nuclear antigen (PCNA) mRNA were determined by real-time PCR.
RESULTS:
RVSP, mPAP and right ventricular remodeling index were significantly elevated in the hypoxia group compared to those in the normoxia group. In the hypoxia group, pulmonary vascular remodeling was significantly developed, accompanied by up-regulation of calpain-1, -2 and -4. MDL28170 significantly inhibited hypoxia-induced proliferation of PASMCs concomitant with the suppression of Ki-67 and PCNA mRNA expression.
CONCLUSION
Calpain mediates vascular remodeling via promoting proliferation of PASMCs in hypoxia-induced pulmonary hypertension.
Animals
;
Calpain
;
genetics
;
physiology
;
Cell Proliferation
;
Dipeptides
;
physiology
;
Hypertension, Pulmonary
;
chemically induced
;
genetics
;
physiopathology
;
Hypertrophy, Right Ventricular
;
Hypoxia
;
Ki-67 Antigen
;
drug effects
;
Myocytes, Smooth Muscle
;
physiology
;
Proliferating Cell Nuclear Antigen
;
drug effects
;
Pulmonary Artery
;
Rats
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
;
Up-Regulation
;
Vascular Remodeling
;
genetics
;
physiology
4.The Effect of Umbilical Cord Blood Derived Mesenchymal Stem Cells in Monocrotaline-induced Pulmonary Artery Hypertension Rats.
Hyeryon LEE ; Jae Chul LEE ; Jung Hyun KWON ; Kwan Chang KIM ; Min Sun CHO ; Yoon Sun YANG ; Wonil OH ; Soo Jin CHOI ; Eun Seok SEO ; Sang Joon LEE ; Tae Jun WANG ; Young Mi HONG
Journal of Korean Medical Science 2015;30(5):576-585
Pulmonary arterial hypertension (PAH) causes right ventricular failure due to a gradual increase in pulmonary vascular resistance. The purposes of this study were to confirm the engraftment of human umbilical cord blood-mesenchymal stem cells (hUCB-MSCs) placed in the correct place in the lung and research on changes of hemodynamics, pulmonary pathology, immunomodulation and several gene expressions in monocrotaline (MCT)-induced PAH rat models after hUCB-MSCs transfusion. The rats were grouped as follows: the control (C) group; the M group (MCT 60 mg/kg); the U group (hUCB-MSCs transfusion). They received transfusions via the external jugular vein a week after MCT injection. The mean right ventricular pressure (RVP) was significantly reduced in the U group after the 2 week. The indicators of RV hypertrophy were significantly reduced in the U group at week 4. Reduced medial wall thickness in the pulmonary arteriole was noted in the U group at week 4. Reduced number of intra-acinar muscular pulmonary arteries was observed in the U group after 2 week. Protein expressions such as endothelin (ET)-1, endothelin receptor A (ERA), endothelial nitric oxide synthase (eNOS) and matrix metalloproteinase (MMP)-2 significantly decreased at week 4. The decreased levels of ERA, eNOS and MMP-2 immunoreactivity were noted by immnohistochemical staining. After hUCB-MSCs were administered, there were the improvement of RVH and mean RVP. Reductions in several protein expressions and immunomodulation were also detected. It is suggested that hUCB-MSCs may be a promising therapeutic option for PAH.
Animals
;
Cytokines/metabolism
;
Disease Models, Animal
;
Endothelin-1/metabolism
;
Fetal Blood/*cytology
;
Gene Expression Regulation/drug effects
;
Hemodynamics
;
Humans
;
Hypertension, Pulmonary/chemically induced/*therapy
;
Hypertrophy, Right Ventricular/physiopathology
;
Immunohistochemistry
;
Lung/metabolism/pathology
;
Male
;
Matrix Metalloproteinase 2/metabolism
;
*Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells/*cytology/metabolism
;
Monocrotaline/toxicity
;
Nitric Oxide Synthase Type III/metabolism
;
Pulmonary Artery/pathology
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Endothelin A/metabolism
5.Effect of chrysin on expression of NOX4 and NF-κB in right ventricle of monocrotaline-induced pulmonary arterial hypertension of rats.
Xian-wei LI ; Bo GUO ; Yuan-yuan SHEN ; Jie-ren YANG
Acta Pharmaceutica Sinica 2015;50(9):1128-1134
The aim of the present study is to investigate the protective effect of chrysin (5,7-dihydroxyflavone) on right ventricular remodeling in a rat model of monocrotaline-induced pulmonary arterial hypertension (PAH). PAH rats were induced by a single injection of monocrotaline (60 mg x kg(-1), sc) and were administered with chrysin (50 or 100 mg x kg(-1) x d(-1)) for 4 weeks. At the end of experiment, the right ventricular systolic pressure (RVSP) and mean pulmonary artery pressure (mPAP) were monitored via the right jugular vein catheterization into the right ventricle. Right ventricle (RV) to left ventricle (LV) + septum (S) and RV to tibial length were calculated. Right ventricular morphological change was observed by HE staining. Masson's trichrome stain was used to demonstrate collagen deposition. The total antioxidative capacity (T-AOC) and malondialdehyde (MDA) levels in right ventricle were determined according to the manufacturer's instructions. The expressions of collagen I, collagen III, NADPH oxidase 4 (NOX4) and nuclear factor-kappa B (NF-κB) were analyzed by immunohistochemisty, qPCR and (or) Western blot. The results showed that chrysin treatment for 4 weeks attenuated RVSP, mPAP and right ventricular remodeling index (RV/LV+S and RV/Tibial length) of PAH rats induced by monocrotaline. Furthermore, monocrotaline-induced right ventricular collagen accumulation and collagen I and collagen III expression were both significantly suppressed by chrysin. The expressions of NOX4, NF-κB and MDA contents were obviously decreased, while the T-AOC was significantly increased in right ventricule from PAH rats with chrysin treatment. These results suggest that chrysin ameliorates right ventricular remodeling of PAH induced by monocrotaline in rats through its down-regulating of NOX4 expression and antioxidant activity, and inhibiting NF-κB expression and collagen accumulation.
Animals
;
Blotting, Western
;
Collagen
;
metabolism
;
Disease Models, Animal
;
Flavonoids
;
pharmacology
;
Heart Ventricles
;
drug effects
;
metabolism
;
Hypertension, Pulmonary
;
chemically induced
;
metabolism
;
Monocrotaline
;
toxicity
;
NADPH Oxidase 4
;
NADPH Oxidases
;
metabolism
;
NF-kappa B
;
metabolism
;
Rats
;
Ventricular Remodeling
;
drug effects
7.Reversible pulmonary arterial hypertension related to dasatinib in the treatment for chronic myelogenous leukemia: a case report and literature review.
Bingcheng LIU ; Ying WANG ; Yingchang MI ; Jianxiang WANG
Chinese Journal of Hematology 2014;35(7):581-586
OBJECTIVETo study the clinical features and prognosis of pulmonary arterial hypertension associated with dasatinib.
METHODSTo present a case of pulmonary arterial hypertension (PAH) associated with long-term exposure to dasatinib and review the related literatures.
RESULTSA 23-year-old female with chronic myelogenous leukemia was treated with dasatinib at a dosage of 140 mg/d after failure of imatinib treatment and achieved complete cytogenetic response. The patient was presented with exertional dyspnea after 35 months of administration with dasatinib. The electrocardiogram showed right ventricular hypertrophy and right axis deviation; transthoracic Doppler echocardiography documented a reduction in diameters of left heart chambers with normal systolic left ventricular function, right heart chambers and pulmonary trunk dilatation, an estimated pulmonary arterial pressure of 114 mmHg; Computed tomography showed thickened pulmonary artery. PAH related to dasatinib was diagnosed and dasatinib was permanently discontinued. The symptom of dyspnea disappeared quickly after withdrawal of dasatinib. The heart structure and pulmonary arterial pressure completely recovered after 7 months of dasatinib discontinuation.
CONCLUSIONPAH is a rare adverse effect of dasatinib treatment. Echocardiograhpy, as a non-invasive screening test for PAH, should be performed before starting dasatinib treatment and repeated during the administration with dasatinib. Dasatinib should be withdrawn permanently in patients with PAH.
Dasatinib ; Female ; Humans ; Hypertension, Pulmonary ; chemically induced ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive ; drug therapy ; Prognosis ; Pyrimidines ; adverse effects ; Thiazoles ; adverse effects ; Young Adult
8.Effects of rutaecarpine on right ventriclar remodeling in rats with monocrotaline-induced pulmonary hypertension.
Xian-Wei LI ; Xiang-Ming WANG ; Shu LI ; Jie-Ren YANG
Chinese Journal of Applied Physiology 2014;30(5):405-410
OBJECTIVETo investigate the protective effects of rutaecarpine (Rut) on right ventricular remodeling in rats with monocrotaline-induced pulmonary hypertension (PH).
METHODForty-eight SD rats were fed adaptively for 1 week and then were randomly divided into the following 4 groups (n = 12): normal control group, monocrotaline (MCT) treatment group, MCT treatment with Rut (20 mg/kg)group and MCT treatment with Rut (40 mg/kg) group. PH rats were induced by a single injection of monocrotaline (60 mg/kg, sc) and were administered with Rut (20 or 40 mg/kg/d) for 4 weeks. At the end of experiment, the right ventricular systolic pressure (RVSP) and mean pulmonary artery pressure (mPAP) were monitored via the right jugular vein catheterization into the right ventricle. The ratio of right ventricle (RV) to left ventricle (LV) + septum (S) and the ratio of RV to tibial length were calculated. Right ventricular morphological changes were deserved by HE staining. Masson's trichrome staining was used to display collagen deposition. The total antioxidative capacity (T-AOC) and malondialdehyde (MDA) levels in right ventricle were determined according to the manufacturer's instructions. mRNA and protein expression levels of NOX4, collagen I and collagen III were analyzed by immunohistochemisty, real-time PCR and Western blot.
RESULTSThe results showed that Rut treatment for 4 weeks attenuated RVSP, mPAP and right ventricular remodeling index (RV/LV + S and RV/Tibial length) of PH rats induced by monocrotaline. Furthermore, the right ventricular collagen deposition and collagen I and collagen I expression induced by MCT were both significantly suppressed by Rut. The expression levels of NOX4 and MDA were obviously decreased, while the T-AOC was significantly increased in right ventricular from PH rats treated with Rut.
CONCLUSIONThese results suggested that Rut ameliorates the right ventricular remodeling in rats with PH induced by MCT through down-regulating of NOX4 expression and collagen accumulation.
Animals ; Antioxidants ; metabolism ; Heart Ventricles ; metabolism ; Hypertension, Pulmonary ; chemically induced ; drug therapy ; Indole Alkaloids ; pharmacology ; Male ; Malondialdehyde ; metabolism ; Monocrotaline ; adverse effects ; NADPH Oxidase 4 ; NADPH Oxidases ; metabolism ; Quinazolines ; pharmacology ; Rats ; Ventricular Remodeling ; drug effects
9.Research on effects of bone marrow mononuclear cells implantation on model of experimental pulmonary artery hypertension.
Yan LU ; Zhaohua ZHANG ; Guanghui CHENG ; Yun LUAN
Journal of Biomedical Engineering 2013;30(3):601-606
In the present study, we carried out intratracheal administration of bone marrow-derived mononuclear cells (BM-MNCs) to dehydromonocrotaline (DMCT)-induced canine pulmonary artery hypertension (PH) of rat model to examine the security and feasibility, and the aim was to discuss the mechanism. All animals (n=30) were randomly divided into 3 groups (n=10 in each group), i. e. control group, PH group and BM-MNCs group. Six weeks after the transplantation, the hemodynamic data and right ventricle weight ratio were significantly improved for those in BM-MNCs group compared with those in PH group. The lung mRNA levels of vascular endothelial growth factor (VEGF) were higher, while preproendothelin-1 (ppET-1), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) were lower compared with those in the PH group (P<0. 05). Immunofluorescence and histochemical results confirmed that 6 weeks after the administration, transplanted BM-MNCs were still alive and could differentiate into pulmonary vascular endothelial cells. These results showed that intratracheal administration of BM-MNCs could obviously reduce or even reverse the DMCT induction of PAH process. The mechanism could be explained as that the function was mainly through the paracrine effect to promote renewable and reduce inflammation.
Animals
;
Bone Marrow Cells
;
cytology
;
Cell Transplantation
;
methods
;
Dogs
;
Familial Primary Pulmonary Hypertension
;
Female
;
Hypertension, Pulmonary
;
chemically induced
;
therapy
;
Leukocytes, Mononuclear
;
transplantation
;
Male
;
Monocrotaline
;
analogs & derivatives
;
Rats
10.Changes of apelin and its receptor in lung tissue of rats with pulmonary hypertension induced by monocrotaline.
Qing WANG ; Gui-Qin WANG ; Ling-Xia PANG ; Feng XUE ; Xing-Yan CHEN ; Ran CHEN ; Xiao-Xia KONG ; Yong-Sheng GONG ; Xiao-Fang FAN
Chinese Journal of Applied Physiology 2013;29(2):101-105
OBJECTIVETo observe the change of apelin and its receptor (APJ) in the lung tissue of rats with pulmonary hypertension induced by monocrotaline and to explore its significance.
METHODSTwenty-five male SD rats were randomly divided into control group (n = 10) and monocrotaline group (n = 15). On the twenty-first day after the rats were intraperitoneally injected 60 mg/kg monocrotaline for monocrotaline group or equal volume vehicle for control group, the mean pulmonary artery pressure was measured by right heart catheterization. Histopathological study of lung tissue was done with hematoxylin-eosin (HE) and Masson's trichrome staining. The concentration of apelin in the plasma was measured by radioimmunoassay. The expressions of apelin/APJ proteins and genes in lung tissue were measured respectively by Western blot and reverse transcription polymerase chain reaction (RT-PCR).
RESULTSThe mean pulmonary arterial pressure, right ventricular hypertrophy, pulmonary vascular remodeling index, content of apelin protein in lung tissue of monocrotaline group were higher than those in control group. APJ protein and gene expression in monocrotaline group were significantly lower than those in control group (P < 0.01, P < 0.05), but apelin gene expression in the lung tissue between the two groups had no significant difference.
CONCLUSIONEndogenous apelin/APJ dysfunction may play an important role in the development of pulmonary hypertension induced by monocrotaline.
Animals ; Apelin ; Apelin Receptors ; Hypertension, Pulmonary ; chemically induced ; metabolism ; Intercellular Signaling Peptides and Proteins ; metabolism ; Lung ; metabolism ; Male ; Monocrotaline ; adverse effects ; Rats ; Rats, Sprague-Dawley ; Receptors, G-Protein-Coupled ; metabolism

Result Analysis
Print
Save
E-mail