1.Fibroblast Growth Factor 8 Suppresses Neurotoxic Astrocytes and Alleviates Neuropathic Pain via Spinal FGFR3 Signaling.
Huizhu LIU ; Lanxing YI ; Guiling LI ; Kangli WANG ; Hongsheng WANG ; Yuqiu ZHANG ; Benlong LIU
Neuroscience Bulletin 2025;41(12):2218-2232
Astrocytes in the spinal dorsal horn (SDH) exhibit diverse reactive phenotypes under neuropathic conditions, yet the mechanisms driving this diversity and its implications in chronic pain remain unclear. Here, we report that spared nerve injury (SNI) induces marked upregulation of both complement component 3 (C3⁺, A1-like) and S100 calcium-binding protein A10 (S100A10⁺, A2-like) astrocyte subpopulations in the SDH, with elevated microglial cytokines including interleukin-1α, tumor necrosis factor-α, and complement component 1q. Transcriptomic, immunohistochemical, and Western blot analyses reveal co-activation of multiple reactive astrocyte states over a unidirectional shift toward an A1-like phenotype. Fibroblast growth factor 8 (FGF8), a neuroprotective factor via FGFR3, mitigated microglia-induced C3⁺ astrocyte reactivity in vitro and suppressed spinal C3 expression and mechanical allodynia following intrathecal administration in SNI mice. These findings reveal a microglia-astrocyte signaling axis that promotes A1 reactivity and position FGF8 as a promising therapeutic candidate for neuropathic pain by modulating astrocyte heterogeneity.
Animals
;
Astrocytes/drug effects*
;
Neuralgia/pathology*
;
Receptor, Fibroblast Growth Factor, Type 3/metabolism*
;
Signal Transduction/physiology*
;
Male
;
Mice
;
Microglia/drug effects*
;
Fibroblast Growth Factor 8/pharmacology*
;
Mice, Inbred C57BL
;
Hyperalgesia/drug therapy*
;
Spinal Cord/drug effects*
;
Complement C3/metabolism*
;
Spinal Cord Dorsal Horn/metabolism*
2.Protective Mechanism of Electroacupuncture on Peripheral Neurotoxicity Induced by Oxaliplatin in Rats.
Feng-Jiao WANG ; She SHI ; Yong-Qiang WANG ; Ke WANG ; Shen-Dong FAN ; Ya-Nan ZHANG ; Chen-Chen FENG ; Zi-Yong JU
Chinese journal of integrative medicine 2022;28(9):833-839
OBJECTIVE:
To study the effect of electroacupuncture (EA) on oxaliplatin-induced peripheral neuropathy (OIPN) in rats.
METHODS:
Male Sprague-Dawley rats were equally divided into 3 groups using a random number table: the control group, the OIPN group, and the EA (OIPN + EA) group, with 10 rats in each. The time courses of mechanical, cold sensitivity, and microcirculation blood flow intensity were determined. The morphology of the dorsal root ganglion (DRG) was observed by electron microscopic examination. The protein levels of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and the transient receptor potential (TRP) protein family in DRGs were assayed by Western blot.
RESULTS:
EA treatment significantly reduced mechanical allodynia and cold allodynia in OIPN rats (P<0.01). Notably, oxaliplatin treatment resulted in impaired microcirculatory blood flow and pathomorphological defects in DRGs (P<0.01). EA treatment increased the microcirculation blood flow and attenuated the pathological changes induced by oxaliplatin (P<0.01). In addition, the expression levels of Nrf2 and HO-1 were down-regulated, and the TRP protein family was over-expressed in the DRGs of OIPN rats (P<0.01). EA increased the expression levels of Nrf2 and HO-1 and decreased the level of TRP protein family in DRG (P<0.05 or P<0.01).
CONCLUSION
EA may be a potential alternative therapy for OIPN, and its mechanism may be mainly mediated by restoring the Nrf2/HO-1 signaling pathway.
Animals
;
Electroacupuncture/methods*
;
Hyperalgesia/therapy*
;
Male
;
Microcirculation
;
NF-E2-Related Factor 2
;
Oxaliplatin/adverse effects*
;
Peripheral Nervous System Diseases/chemically induced*
;
Rats
;
Rats, Sprague-Dawley
3.Elemene Emulsion Injection Administration Reduces Neuropathic Pain by Inhibiting Astrocytic NDRG2 Expression within Spinal Dorsal Horn.
Li-Tian MA ; Yang BAI ; Jie LI ; Yu QIAO ; Yang LIU ; Jin ZHENG
Chinese journal of integrative medicine 2021;27(12):912-918
OBJECTIVE:
To investigate the mechanisms underlying elemene-induced analgesia in rats with spared nerve injury (SNI).
METHODS:
Sixty-five rats were equally divided into 5 groups using a random number table: naive group, sham group, SNI group, SNI + elemene (40 mg·kg
RESULTS:
The SNI rat model exhibited a significant decrease in paw withdrawal threshold and exploratory behaviour in the EPM (P<0.05). Consecutive administration of elemene alleviated SNI-induced mechanical allodynia and anxiety in rats (P<0.05). Immunohistochemical data showed that elemene decreased SNI-induced upregulation of NDRG2 within the SDH (P<0.05). Double immunofluorescent staining data further showed that elemene decreased SNI-induced upregulation of the number of GFAP immunoreactive (-ir), NDRG-ir, and GFAP/NDRG2 double-labelled cells within the SDH (P<0.05). Immunoblotting data showed that elemene decreased SNI-induced upregulation of GFAP and NDRG2 within the SDH (P<0.05).
CONCLUSION
Elemene possibly alleviated neuropathic pain by downregulating the expression of NDRG2 in spinal astrocytes in a rat model of SNI.
Animals
;
Astrocytes
;
Disease Models, Animal
;
Emulsions
;
Hyperalgesia/drug therapy*
;
Nerve Tissue Proteins
;
Neuralgia/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Sesquiterpenes
;
Spinal Cord
;
Spinal Cord Dorsal Horn
4.Escin alleviates chemotherapy-induced peripheral neuropathic pain by inducing autophagy in the spinal cord of rats.
Fang YAN ; Dongtai CHEN ; Jingdun XIE ; Weian ZENG ; Qiang LI
Journal of Southern Medical University 2020;40(11):1634-1638
OBJECTIVE:
To investigate the effect of escin in relieving chemotherapy-induced peripheral neuropathic pain in rats and explore and the underlying mechanism.
METHODS:
Eighteen SD rats were randomly divided into 3 groups (
RESULTS:
The rats in both the escin preconditioning group and escin postconditioning group showed obviously increased thresholds of mechanical allodynia and thermal hyperalgesia as compared with those in the control group (
CONCLUSIONS
Escin can alleviate chemotherapy-induced peripheral neuropathic pain in rats possibly by upregulating the expressions of autophagy-related proteins in the spinal cord.
Animals
;
Antineoplastic Agents/therapeutic use*
;
Autophagy
;
Escin/therapeutic use*
;
Hyperalgesia/drug therapy*
;
Mice
;
Neuralgia/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Spinal Cord
5.Neonatal Maternal Deprivation Followed by Adult Stress Enhances Adrenergic Signaling to Advance Visceral Hypersensitivity.
Wan-Jie DU ; Shufen HU ; Xin LI ; Ping-An ZHANG ; Xinghong JIANG ; Shan-Ping YU ; Guang-Yin XU
Neuroscience Bulletin 2019;35(1):4-14
The pathophysiology of visceral pain in patients with irritable bowel syndrome remains largely unknown. Our previous study showed that neonatal maternal deprivation (NMD) does not induce visceral hypersensitivity at the age of 6 weeks in rats. The aim of this study was to determine whether NMD followed by adult stress at the age of 6 weeks induces visceral pain in rats and to investigate the roles of adrenergic signaling in visceral pain. Here we showed that NMD rats exhibited visceral hypersensitivity 6 h and 24 h after the termination of adult multiple stressors (AMSs). The plasma level of norepinephrine was significantly increased in NMD rats after AMSs. Whole-cell patch-clamp recording showed that the excitability of dorsal root ganglion (DRG) neurons from NMD rats with AMSs was remarkably increased. The expression of β adrenergic receptors at the protein and mRNA levels was markedly higher in NMD rats with AMSs than in rats with NMD alone. Inhibition of β adrenergic receptors with propranolol or butoxamine enhanced the colorectal distention threshold and application of butoxamine also reversed the enhanced hypersensitivity of DRG neurons. Overall, our data demonstrate that AMS induces visceral hypersensitivity in NMD rats, in part due to enhanced NE-β adrenergic signaling in DRGs.
Adrenergic Agents
;
pharmacology
;
Animals
;
Ganglia, Spinal
;
drug effects
;
Hyperalgesia
;
drug therapy
;
physiopathology
;
Hypersensitivity
;
drug therapy
;
Male
;
Maternal Deprivation
;
Neurons
;
drug effects
;
Patch-Clamp Techniques
;
methods
;
Rats, Sprague-Dawley
;
Signal Transduction
;
drug effects
;
Stress, Physiological
;
physiology
;
Visceral Pain
;
chemically induced
;
metabolism
6.Kir2.1 Channel Regulation of Glycinergic Transmission Selectively Contributes to Dynamic Mechanical Allodynia in a Mouse Model of Spared Nerve Injury.
Yiqian SHI ; Yangyang CHEN ; Yun WANG
Neuroscience Bulletin 2019;35(2):301-314
Neuropathic pain is a chronic debilitating symptom characterized by spontaneous pain and mechanical allodynia. It occurs in distinct forms, including brush-evoked dynamic and filament-evoked punctate mechanical allodynia. Potassium channel 2.1 (Kir2.1), which exhibits strong inward rectification, is and regulates the activity of lamina I projection neurons. However, the relationship between Kir2.1 channels and mechanical allodynia is still unclear. In this study, we first found that pretreatment with ML133, a selective Kir2.1 inhibitor, by intrathecal administration, preferentially inhibited dynamic, but not punctate, allodynia in mice with spared nerve injury (SNI). Intrathecal injection of low doses of strychnine, a glycine receptor inhibitor, selectively induced dynamic, but not punctate allodynia, not only in naïve but also in ML133-pretreated mice. In contrast, bicuculline, a GABA receptor antagonist, induced only punctate, but not dynamic, allodynia. These results indicated the involvement of glycinergic transmission in the development of dynamic allodynia. We further found that SNI significantly suppressed the frequency, but not the amplitude, of the glycinergic spontaneous inhibitory postsynaptic currents (gly-sIPSCs) in neurons on the lamina II-III border of the spinal dorsal horn, and pretreatment with ML133 prevented the SNI-induced gly-sIPSC reduction. Furthermore, 5 days after SNI, ML133, either by intrathecal administration or acute bath perfusion, and strychnine sensitively reversed the SNI-induced dynamic, but not punctate, allodynia and the gly-sIPSC reduction in lamina IIi neurons, respectively. In conclusion, our results suggest that blockade of Kir2.1 channels in the spinal dorsal horn selectively inhibits dynamic, but not punctate, mechanical allodynia by enhancing glycinergic inhibitory transmission.
Animals
;
Bicuculline
;
pharmacology
;
Disease Models, Animal
;
Glycine
;
metabolism
;
Hyperalgesia
;
drug therapy
;
etiology
;
metabolism
;
Imidazoles
;
pharmacology
;
Inhibitory Postsynaptic Potentials
;
drug effects
;
physiology
;
Male
;
Mice, Inbred C57BL
;
Neurons
;
drug effects
;
metabolism
;
Neurotransmitter Agents
;
pharmacology
;
Peripheral Nerve Injuries
;
drug therapy
;
metabolism
;
Phenanthrolines
;
pharmacology
;
Potassium Channels, Inwardly Rectifying
;
antagonists & inhibitors
;
metabolism
;
Receptors, GABA-A
;
metabolism
;
Receptors, Glycine
;
metabolism
;
Strychnine
;
pharmacology
;
Synaptic Transmission
;
drug effects
;
physiology
;
Tissue Culture Techniques
;
Touch
7.Effects of Simvastatin on Diabetic Neuropathic Pain and Systematic Inflammation in Diabetic Rat Models and Their Molecular Mechanisms.
Xin ZHANG ; Le SHEN ; Yu Guang HUANG
Acta Academiae Medicinae Sinicae 2019;41(3):283-290
Objective To investigate the effects of simvastatin on diabetic neuropathic pain and systematic inflammation in diabetic rats and explore their molecular mechanisms.Methods Totally 24 rats were equally randomized into the normal+vehicle(NV)group,diabetic+vehicle(DV)group,and diabetic+simvastatin(DS)group using the random number table.Streptozotocin(STZ)was used to establish the rat models of diabetes.Blood glucose,body mass,paw withdrawal mechanical threshold(PWMT),and paw withdrawal thermal latency(PWTL)in each group were observed on days 7,14,21,and 28 after STZ injection.On day 28 after STZ injection,rats were sacrificed,and the lumbar spinal dorsal horn and serum were collected.Western blotting was used to detect the expression of receptor for advanced glycation end products(RAGE)and the phosphorylation levels of protein kinase B(AKT),extracellular signal-regulated kinase(ERK),p38,and c-Jun N-terminal kinase(JNK)in the spinal dorsal horn of rats in each group.Enzyme-linked immunosorbent assay was performed to determine the serum concentrations of oxidized low density lipoprotein(ox-LDL)and interleukin-1β(IL-1β).Results On days 14,21 and 28 after STZ injection,the PWMT in DV group were(8.6 ± 0.8),(7.1 ± 1.6),and(7.8 ± 0.8)g respectively,which were significantly lower than (12.0 ± 0.9)(=8.482, =0.000),(11.6 ± 1.5)(=11.309, =0.000),and(11.7 ± 1.5)g(=9.801, =0.000)in NV group.The PWMT in DS group on days 21 and 28 were(9.4 ± 1.4)(=5.780, =0.000)and(9.7 ± 0.9)g(=4.775, =0.003),respectively,which were significantly improved comparing with those of DV group.On days 7,14,21,and 28,there were no significant differences in PWTL among these three groups (all <0.05).The expression of RAGE in the spinal dorsal horn of DV group was significantly higher than those of NV group(=6.299, =0.000)and DS group(=2.891, =0.025).The phosphorylation level of AKT in the spinal dorsal horn of DV group was significantly higher than those of NV group(=8.915,=0.000)and DS group(=4.103,=0.003).The phosphorylation levels of ERK( =8.313,=0.000),p38( =2.965, =0.022),and JNK(=7.459, =0.000)in the spinal dorsal horn of DV group were significantly higher than those of NV group;the phosphorylation level of JNK in the spinal dorsal horn of DS group was significant lower than that of DV group(=3.866, =0.004);however,there were no significant differences in the phosphorylation levels of ERK(=1.987,=0.122)and p38(=1.260,=0.375)in the spinal dorsal horn between DS group and DV group.The serum concentrations of ox-LDL and IL-1β in DV group were(41.86 ± 13.40)ng/ml and(108.16 ± 25.88)pg/ml,respectively,which were significantly higher than those in NV group [(24.66 ± 7.87)ng/ml(=3.606,=0.003)and(49.32 ± 28.35)pg/ml(=5.079,=0.000)] and DS group [(18.81 ± 5.62)ng/ml (=4.833, =0.000)and(32.73 ± 11.73)pg/ml(=6.510, =0.000)].Conclusions Simvastatin can relieve the mechanical allodynia of diabetic rats possibly by inhibiting the activation of RAGE/AKT and the phosphorylation of JNK in the spinal dorsal horn.Simvastatin can also decrease the serum concentrations of ox-LDL and IL-1β in diabetic rats,which may contribute to the relief of systematic inflammation.
Animals
;
Diabetes Mellitus, Experimental
;
complications
;
Hyperalgesia
;
Inflammation
;
drug therapy
;
Interleukin-1beta
;
blood
;
Lipoproteins, LDL
;
blood
;
Neuralgia
;
drug therapy
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Receptor for Advanced Glycation End Products
;
metabolism
;
Simvastatin
;
pharmacology
8.Effects of ginsenoside-Rg on mechanical allodynia, heat hyperalgeia, depressive state of rats with chronic sciatic nerve constriction injury.
Qiao-Lian ZHANG ; Shuang-Ying LI ; Ping LI
Chinese Journal of Applied Physiology 2019;35(3):228-231
OBJECTIVE:
To investigate the effects of ginsenoside-Rg on mechanical allodynia, heat hyperalgeia, depressive state of rats with chronic sciatic nerve constriction injury.
METHODS:
Fifty SD rats were randomly divided into 5 groups: blank control group (Normal, normal + saline),sham operation group (Sham, sham operation + saline),chronic constriction injury of the sciatic nerve group (CCI, CCI + saline),ginsenoside-Rg low dose group (CCI + Rg 5 mg/kg), and ginsenoside-Rg high dose group (CCI + Rg 10 mg/kg).After the CCI model was established,drug were injected into the abdominal cavity through the syringe once a day,for 14 consecutive days.The mechanical shrinkage foot reflex threshold (MWT) and thermal withdrawal latency(TWL) were determined at 1 d before the operation and at 1,3,5,7,10 and 14 d after the operation.Light-dark transition test, forced swimming test were determined at 1 d before the operation and at 14 d after the operation.
RESULTS:
Compared with the sham group, the MWL and TWL of the CCI rats were decreased significantly (P<0.01), time in the light compartment and number of transition were decreased (P<0.01), the immobility time in FST was also prolonged significantly (P<0.01). At 14 days after CCI operation, the MWL and TWL of the ginsenoside-Rg groups were increased significantly (P<0.01), time in the light compartment and number of transition were also shortened significantly (P<0.01), the immobility time in FST was also shortened significantly (P<0.01).
CONCLUSION
Intraperitoneal injection of ginsenoside-Rg can inhibit the mechanical and thermal pain sensitivity of CCI rats,and can relieve depressive state.
Animals
;
Constriction
;
Ginsenosides
;
pharmacology
;
Hot Temperature
;
adverse effects
;
Hyperalgesia
;
drug therapy
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Sciatic Nerve
;
injuries
9.Glial Cell Line-derived Neurotrophic Factor-overexpressing Human Neural Stem/Progenitor Cells Enhance Therapeutic Efficiency in Rat with Traumatic Spinal Cord Injury
Kyujin HWANG ; Kwangsoo JUNG ; Il Sun KIM ; Miri KIM ; Jungho HAN ; Joohee LIM ; Jeong Eun SHIN ; Jae Hyung JANG ; Kook In PARK
Experimental Neurobiology 2019;28(6):679-696
Spinal cord injury (SCI) causes axonal damage and demyelination, neural cell death, and comprehensive tissue loss, resulting in devastating neurological dysfunction. Neural stem/progenitor cell (NSPCs) transplantation provides therapeutic benefits for neural repair in SCI, and glial cell line-derived neurotrophic factor (GDNF) has been uncovered to have capability of stimulating axonal regeneration and remyelination after SCI. In this study, to evaluate whether GDNF would augment therapeutic effects of NSPCs for SCI, GDNF-encoding or mock adenoviral vector-transduced human NSPCs (GDNF-or Mock-hNSPCs) were transplanted into the injured thoracic spinal cords of rats at 7 days after SCI. Grafted GDNF-hNSPCs showed robust engraftment, long-term survival, an extensive distribution, and increased differentiation into neurons and oligodendroglial cells. Compared with Mock-hNSPC- and vehicle-injected groups, transplantation of GDNF-hNSPCs significantly reduced lesion volume and glial scar formation, promoted neurite outgrowth, axonal regeneration and myelination, increased Schwann cell migration that contributed to the myelin repair, and improved locomotor recovery. In addition, tract tracing demonstrated that transplantation of GDNF-hNSPCs reduced significantly axonal dieback of the dorsal corticospinal tract (dCST), and increased the levels of dCST collaterals, propriospinal neurons (PSNs), and contacts between dCST collaterals and PSNs in the cervical enlargement over that of the controls. Finally grafted GDNF-hNSPCs substantially reversed the increased expression of voltage-gated sodium channels and neuropeptide Y, and elevated expression of GABA in the injured spinal cord, which are involved in the attenuation of neuropathic pain after SCI. These findings suggest that implantation of GDNF-hNSPCs enhances therapeutic efficiency of hNSPCs-based cell therapy for SCI.
Animals
;
Axons
;
Cell Death
;
Cell Movement
;
Cell- and Tissue-Based Therapy
;
Cicatrix
;
Demyelinating Diseases
;
gamma-Aminobutyric Acid
;
Glial Cell Line-Derived Neurotrophic Factor
;
Humans
;
Hyperalgesia
;
Myelin Sheath
;
Neuralgia
;
Neurites
;
Neuroglia
;
Neurons
;
Neuropeptide Y
;
Paraplegia
;
Pyramidal Tracts
;
Rats
;
Regeneration
;
Spinal Cord Injuries
;
Spinal Cord
;
Therapeutic Uses
;
Transplants
;
Voltage-Gated Sodium Channels
10.Estrogen modulation of visceral pain.
Li-Hong SUN ; Wen-Xin ZHANG ; Qi XU ; Hui WU ; Cui-Cui JIAO ; Xin-Zhong CHEN
Journal of Zhejiang University. Science. B 2019;20(8):628-636
It is commonly accepted that females and males differ in their experience of pain. Gender differences have been found in the prevalence and severity of pain in both clinical and animal studies. Sex-related hormones are found to be involved in pain transmission and have critical effects on visceral pain sensitivity. Studies have pointed out the idea that serum estrogen is closely related to visceral nociceptive sensitivity. This review aims to summarize the literature relating to the role of estrogen in modulating visceral pain with emphasis on deciphering the potential central and peripheral mechanisms.
Animals
;
Estrogens/metabolism*
;
Female
;
Humans
;
Hyperalgesia/therapy*
;
Immune System
;
Male
;
Nociceptors
;
Ovariectomy
;
Pain Management
;
Pain Threshold
;
Sex Factors
;
Visceral Pain/therapy*

Result Analysis
Print
Save
E-mail