1.A Novel Landmark-based Semi-supervised Deep Learning Method for Cerebral Aneurysm Detection Using TOF-MRA
Hyeonsik YANG ; Jieun PARK ; Eunyoung Regina KIM ; Minho LEE ; ZunHyan RIEU ; Donghyeon KIM ; Beomseok SOHN ; Kijeong LEE
Journal of the Korean Neurological Association 2024;42(4):322-330
Background:
Time-of-flight (TOF) magnetic resonance angiography (MRA) is widely used to identify aneurysm in human brain. Various deep learning models have been developed to help TOF-MRA reading in the field. The performance of those TOF-MRA analysis tools, however, faces several limitations in cerebral aneurysm detection. These challenges primarily come from the fact that cerebral aneurysms occupy less than 0.1% of the total TOF-MRA voxel size. This study aims to improve the efficiency of cerebral aneurysm detection by developing a landmark-based semi-supervised deep learning method, a technology that automatically generates landmark boxes in areas with a high probability of cerebral aneurysm occurrence.
Methods:
We used data from a total of 500 aneurysm-positive and 50 aneurysm-negative subjects. The aneurysm detection model was developed using clustering and a dilated residual network.
Results:
When the number of landmarks was ten and their size was 36 mm3, the best performance was achieved in our experiment. Although landmark occupies a small portion of the entire image, up to 98.2% of landmarks were cerebral aneurysms. The sensitivity of the model for cerebral aneurysm detection was 83.0%, with a false positive rate of 3.4%.
Conclusions
This study developed a deep learning model using TOF-MRA image. This model generates the most suitable landmarks for each individual, excluding unnecessary areas for cerebral aneurysm detection, which makes it possible to focus on areas with a high probability of occurrence. This model is expected to enhance the efficiency and accuracy of cerebral aneurysm detection in the field.
3.A Novel Landmark-based Semi-supervised Deep Learning Method for Cerebral Aneurysm Detection Using TOF-MRA
Hyeonsik YANG ; Jieun PARK ; Eunyoung Regina KIM ; Minho LEE ; ZunHyan RIEU ; Donghyeon KIM ; Beomseok SOHN ; Kijeong LEE
Journal of the Korean Neurological Association 2024;42(4):322-330
Background:
Time-of-flight (TOF) magnetic resonance angiography (MRA) is widely used to identify aneurysm in human brain. Various deep learning models have been developed to help TOF-MRA reading in the field. The performance of those TOF-MRA analysis tools, however, faces several limitations in cerebral aneurysm detection. These challenges primarily come from the fact that cerebral aneurysms occupy less than 0.1% of the total TOF-MRA voxel size. This study aims to improve the efficiency of cerebral aneurysm detection by developing a landmark-based semi-supervised deep learning method, a technology that automatically generates landmark boxes in areas with a high probability of cerebral aneurysm occurrence.
Methods:
We used data from a total of 500 aneurysm-positive and 50 aneurysm-negative subjects. The aneurysm detection model was developed using clustering and a dilated residual network.
Results:
When the number of landmarks was ten and their size was 36 mm3, the best performance was achieved in our experiment. Although landmark occupies a small portion of the entire image, up to 98.2% of landmarks were cerebral aneurysms. The sensitivity of the model for cerebral aneurysm detection was 83.0%, with a false positive rate of 3.4%.
Conclusions
This study developed a deep learning model using TOF-MRA image. This model generates the most suitable landmarks for each individual, excluding unnecessary areas for cerebral aneurysm detection, which makes it possible to focus on areas with a high probability of occurrence. This model is expected to enhance the efficiency and accuracy of cerebral aneurysm detection in the field.
5.A Novel Landmark-based Semi-supervised Deep Learning Method for Cerebral Aneurysm Detection Using TOF-MRA
Hyeonsik YANG ; Jieun PARK ; Eunyoung Regina KIM ; Minho LEE ; ZunHyan RIEU ; Donghyeon KIM ; Beomseok SOHN ; Kijeong LEE
Journal of the Korean Neurological Association 2024;42(4):322-330
Background:
Time-of-flight (TOF) magnetic resonance angiography (MRA) is widely used to identify aneurysm in human brain. Various deep learning models have been developed to help TOF-MRA reading in the field. The performance of those TOF-MRA analysis tools, however, faces several limitations in cerebral aneurysm detection. These challenges primarily come from the fact that cerebral aneurysms occupy less than 0.1% of the total TOF-MRA voxel size. This study aims to improve the efficiency of cerebral aneurysm detection by developing a landmark-based semi-supervised deep learning method, a technology that automatically generates landmark boxes in areas with a high probability of cerebral aneurysm occurrence.
Methods:
We used data from a total of 500 aneurysm-positive and 50 aneurysm-negative subjects. The aneurysm detection model was developed using clustering and a dilated residual network.
Results:
When the number of landmarks was ten and their size was 36 mm3, the best performance was achieved in our experiment. Although landmark occupies a small portion of the entire image, up to 98.2% of landmarks were cerebral aneurysms. The sensitivity of the model for cerebral aneurysm detection was 83.0%, with a false positive rate of 3.4%.
Conclusions
This study developed a deep learning model using TOF-MRA image. This model generates the most suitable landmarks for each individual, excluding unnecessary areas for cerebral aneurysm detection, which makes it possible to focus on areas with a high probability of occurrence. This model is expected to enhance the efficiency and accuracy of cerebral aneurysm detection in the field.
7.Development of Efficient Brain Age Estimation Method Based on Regional Brain Volume From Structural Magnetic Resonance Imaging
Sunghwan KIM ; Sheng-Min WANG ; Dong Woo KANG ; Yoo Hyun UM ; Hyeonsik YANG ; Hyunji LEE ; Regina EY KIM ; Donghyeon KIM ; Chang Uk LEE ; Hyun Kook LIM
Psychiatry Investigation 2024;21(1):37-43
Objective:
We aimed to create an efficient and valid predicting model which can estimate individuals’ brain age by quantifying their regional brain volumes.
Methods:
A total of 2,560 structural brain magnetic resonance imaging (MRI) scans, along with demographic and clinical data, were obtained. Pretrained deep-learning models were employed to automatically segment the MRI data, which enabled fast calculation of regional brain volumes. Brain age gaps for each subject were estimated using volumetric values from predefined 12 regions of interest (ROIs): bilateral frontal, parietal, occipital, and temporal lobes, as well as bilateral hippocampus and lateral ventricles. A larger weight was given to the ROIs having a larger mean volumetric difference between the cognitively unimpaired (CU) and cognitively impaired group including mild cognitive impairment (MCI), and dementia groups. The brain age was predicted by adding or subtracting the brain age gap to the chronological age according to the presence or absence of the atrophy region.
Results:
The study showed significant differences in brain age gaps among CU, MCI, and dementia groups. Furthermore, the brain age gaps exhibited significant correlations with education level and measures of cognitive function, including the clinical dementia rating sum-of-boxes and the Korean version of the Mini-Mental State Examination.
Conclusion
The brain age that we developed enabled fast and efficient brain age calculations, and it also reflected individual’s cognitive function and cognitive reserve. Thus, our study suggested that the brain age might be an important marker of brain health that can be used effectively in real clinical settings.