1.Astrocytes and Microglia as Non-cell Autonomous Players in the Pathogenesis of ALS.
Junghee LEE ; Seung Jae HYEON ; Hyeonjoo IM ; Hyun RYU ; Yunha KIM ; Hoon RYU
Experimental Neurobiology 2016;25(5):233-240
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that leads to a progressive muscle wasting and paralysis. The pathological phenotypes are featured by severe motor neuron death and glial activation in the lumbar spinal cord. Proposed ALS pathogenic mechanisms include glutamate cytotoxicity, inflammatory pathway, oxidative stress, and protein aggregation. However, the exact mechanisms of ALS pathogenesis are not fully understood yet. Recently, a growing body of evidence provides a novel insight on the importance of glial cells in relation to the motor neuronal damage via the non-cell autonomous pathway. Accordingly, the aim of the current paper is to overview the role of astrocytes and microglia in the pathogenesis of ALS and to better understand the disease mechanism of ALS.
Amyotrophic Lateral Sclerosis
;
Astrocytes*
;
Glutamic Acid
;
Microglia*
;
Motor Neurons
;
Neurodegenerative Diseases
;
Neuroglia
;
Oxidative Stress
;
Paralysis
;
Phenotype
;
Spinal Cord
2.Genetic Ablation of EWS RNA Binding Protein 1 (EWSR1) Leads to Neuroanatomical Changes and Motor Dysfunction in Mice.
Yeojun YOON ; Hasang PARK ; Sangyeon KIM ; Phuong T NGUYEN ; Seung Jae HYEON ; Sooyoung CHUNG ; Hyeonjoo IM ; Junghee LEE ; Sean Bong LEE ; Hoon RYU
Experimental Neurobiology 2018;27(2):103-111
A recent study reveals that missense mutations of EWSR1 are associated with neurodegenerative disorders such as amyotrophic lateral sclerosis, but the function of wild-type (WT) EWSR1 in the central nervous system (CNS) is not known yet. Herein, we investigated the neuroanatomical and motor function changes in Ewsr1 knock out (KO) mice. First, we quantified neuronal nucleus size in the motor cortex, dorsal striatum and hippocampus of three different groups: WT, heterozygous Ewsr1 KO (+/−), and homozygous Ewsr1 KO (−/−) mice. The neuronal nucleus size was significantly smaller in the motor cortex and striatum of homozygous Ewsr1 KO (−/−) mice than that of WT. In addition, in the hippocampus, the neuronal nucleus size was significantly smaller in both heterozygous Ewsr1 KO (+/−) and homozygous Ewsr1 KO (−/−) mice. We then assessed motor function of Ewsr1 KO (−/−) and WT mice by a tail suspension test. Both forelimb and hindlimb movements were significantly increased in Ewsr1 KO (−/−) mice. Lastly, we performed immunohistochemistry to examine the expression of TH, DARPP-32, and phosphorylated (p)-DARPP-32 (Thr75) in the striatum and substantia nigra, which are associated with dopaminergic signaling. The immunoreactivity of TH and DARPP-32 was decreased in Ewsr1 KO (−/−) mice. Together, our results suggest that EWSR1 plays a significant role in neuronal morphology, dopaminergic signaling pathways, and motor function in the CNS of mice.
Amyotrophic Lateral Sclerosis
;
Animals
;
Central Nervous System
;
Dopamine
;
Forelimb
;
Hindlimb
;
Hindlimb Suspension
;
Hippocampus
;
Immunohistochemistry
;
Mice*
;
Motor Cortex
;
Mutation, Missense
;
Neurodegenerative Diseases
;
Neurons
;
RNA*
;
RNA-Binding Proteins*
;
Substantia Nigra
3.Leukemic stem cell phenotype is associated with mutational profile in acute myeloid leukemia
Heejoo HAN ; Ja Min BYUN ; Dong-Yeop SHIN ; Sung-Soo YOON ; Youngil KOH ; Junshik HONG ; Inho KIM ; Chansup LEE ; Hyeonjoo YOO ; Hongseok YUN ; Man Jin KIM ; Sung Im CHO ; Moon-Woo SEONG ; Sung Sup PARK
The Korean Journal of Internal Medicine 2021;36(2):401-412
Background/Aims:
Understanding leukemic stem cell (LSC) is important for acute myeloid leukemia (AML) treatment. However, association of LSC with patient prognosis and genetic information in AML patients is unclear.
Methods:
Here we investigated the associations between genetic information and the various LSC phenotypes, namely multipotent progenitor (MPP)-like, lymphoid primed multipotent progenitor (LMPP)-like and granulocyte-macrophage progenitors (GMP)-like LSC in 52 AML patients.
Results:
In secondary AML patients, MPP-like LSC was significantly higher than de novo AML (p = 0.0037). The proportion of MPP-like LSC was especially high in post-myeloproliferative neoplasm AML (p = 0.0485). There was no correlation between age and LSC phenotype. Mutations of KRAS and NRAS were observed in MPP-like LSC dominant patients, TP53 and ASXL1 mutations in LMPP-like LSC dominant patients, and CEBPA, DNMT3A and IDH1 mutations in GMP-like LSC dominant patients. Furthermore, KRAS mutation was significantly associated with MPP-like LSC expression (p = 0.0540), and TP53 mutation with LMPP-like LSC expression (p = 0.0276). When the patients were separated according to the combined risk including next generation sequencing data, the poorer the prognosis, the higher the LMPP-like LSC expression (p = 0.0052). This suggests that the dominant phenotype of LSC is one of the important factors in predicting the prognosis and treatment of AML.
Conclusions
LSC phenotype in AML is closely associated with the recurrent mutations which has prognostic implication. Further research to confirm the meaning of LSC phenotype in the context of genetic aberration is warranted.