1.Preclinical Pharmacokinetic Evaluation of beta-Lapachone: Characteristics of Oral Bioavailability and First-Pass Metabolism in Rats.
Iksoo KIM ; Hyeongmin KIM ; Jieun RO ; Kanghee JO ; Sandeep KARKI ; Prakash KHADKA ; Gyiae YUN ; Jaehwi LEE
Biomolecules & Therapeutics 2015;23(3):296-300
beta-Lapachone has drawn increasing attention as an anti-inflammatory and anti-cancer drug. However, its oral bioavailability has not been yet assessed, which might be useful to develop efficient dosage forms possibly required for non-clinical and clinical studies and future market. The aim of the present study was thus to investigate pharmacokinetic properties of beta-lapachone as well as its first-pass metabolism in the liver, and small and large intestines after oral administration to measure the absolute bioavailability in rats. A sensitive HPLC method was developed to evaluate levels of beta-lapachone in plasma and organ homogenates. The drug degradation profiles were examined in plasma to assess the stability of the drug and in liver and intestinal homogenates to evaluate first-pass metabolism. Pharmacokinetic profiles were obtained after oral and intravenous administration of beta-lapachone at doses of 40 mg/kg and 1.5 mg/kg, respectively. The measured oral bioavailability of beta-lapachone was 15.5%. The considerable degradation of beta-lapachone was seen in the organ homogenates but the drug was quite stable in plasma. In conclusion, we suggest that the fairly low oral bioavailability of beta-lapachone may be resulted from the first-pass metabolic degradation of beta-lapachone in the liver, small and large intestinal tracts and its low aqueous solubility.
Administration, Intravenous
;
Administration, Oral
;
Animals
;
Biological Availability*
;
Chromatography, High Pressure Liquid
;
Dosage Forms
;
Intestines
;
Liver
;
Metabolism*
;
Pharmacokinetics
;
Plasma
;
Rats*
;
Solubility
2.Current Status of the Retrieval Rate of Retrievable Vena Cava Filters in a Tertiary Referral Center in Korea.
Hyeongmin PARK ; Ahram HAN ; Chanjoong CHOI ; Sang Il MIN ; Jongwon HA ; In Mok JUNG ; Taeseung LEE ; Hyo Cheol KIM ; Hwan Joon JAE ; Seung Kee MIN
Vascular Specialist International 2014;30(4):133-138
PURPOSE: The purpose of this study was to review the daily practice of inferior vena cava filters (IVCFs) in a tertiary referral center in Korea and to reveal the retrieval rate and the methods for improving it. MATERIALS AND METHODS: Through the electronic medical record system, a retrospective review was performed on 115 consecutive patients who underwent placement of retrievable IVCFs between February 2000 and January 2011 in Seoul National University Hospital. RESULTS: IVCF placement was done in 115 cases (113 patients). There were 68 men (59.1%), and the mean age was 58.5+/-15.5 years (range, 10-96 years). The affiliated departments were Vascular Surgery (57 cases, 49.6%), and Internal Medicine (20 cases, 17.4%). Advanced malignancy was the most commonly associated disease (n=30, 26%). The indications for IVCF placement were categorized; absolute indications in 36 cases (31.3%), relative indications in 78 cases (67.8%), and prophylactic use in 1 case (0.9%). The most common indications were thrombolysis/thrombectomy for iliocaval deep vein thrombosis (DVT) (n=55, 47.8). Of the 115 filters, 68 were retrieved (retrieval rate, 59%). The most common cause of non-retrieval was chronic high risk of venous thromboembolism in 24 patients (51%), followed by residual proximal DVT (n=7, 15%), and negligence by unknown reasons (n=6, 13%). CONCLUSION: To improve the retrieval rate, the number of follow-up losses to vascular specialists must be decreased, which can be achieved by establishment of a dedicated IVC filter clinic, implementation of a filter registry, and regular education for medical teams and patients along with their families.
Education
;
Electronic Health Records
;
Follow-Up Studies
;
Humans
;
Internal Medicine
;
Korea
;
Male
;
Malpractice
;
Pulmonary Embolism
;
Retrospective Studies
;
Seoul
;
Specialization
;
Tertiary Care Centers*
;
Vena Cava Filters*
;
Venous Thromboembolism
;
Venous Thrombosis
3.A Commissioning Report on the Magnetic ResonanceCompatible Geneva Brachytherapy Applicator
Yoonsuk HUH ; Hyojun PARK ; Jin JEGAL ; Inbum LEE ; Jaeman SON ; Seonghee KANG ; Chang Heon CHOI ; Jung-in KIM ; Hyeongmin JIN
Progress in Medical Physics 2024;35(4):116-124
Purpose:
Brachytherapy is essential for treating gynecological cancers as it offers precise radiation delivery to tumors while minimizing radiation exposure to surrounding healthy tissues. The Geneva applicator, introduced in 2020 as a replacement for older models like the Utrecht applicator, enhances MRI-based brachytherapy with improved imaging capabilities and more accurate applicator placement. In 2021, updates to non-reimbursement policies in Korea for MRI-based 3D brachytherapy planning further promoted the adoption of advanced techniques such as the Geneva applicator. This study aims to commission the Geneva applicator, focusing on wall thickness, dummy marker positions, and source dwell positions to ensure accurate dose delivery and safety.
Methods:
The commissioning process involved measuring wall thickness in both the longitudinal and transverse directions for the tandem and lunar-shaped ovoid tubes and comparing thesemeasurements with the manufacturer’s specifications. Dummy marker positions were verifiedusing CT imaging, with a focus on alignment tolerances of ±1 mm. Source dwell positions were planned using the Oncentra treatment planning system, with measurements taken using EBT4 film and analyzed with RIT software.
Results:
Wall thickness measurements and dummy marker positions were within the specified tolerance ranges, confirming their accuracy. The source dwell positions, measured and analyzedthrough multiple tests, were all within the ±1 mm tolerance, ensuring the applicator’s reliability.
Conclusions
The Geneva applicator met all standards for safe and effective use in brachytherapy.The use of a 3D-printed holder was crucial for precise alignment and measurement. With updated reimbursement policies in Korea for MRI-based brachytherapy, the Geneva applicator is expected to significantly impact the future of advanced brachytherapy treatments and research.
4.A Commissioning Report on the Magnetic ResonanceCompatible Geneva Brachytherapy Applicator
Yoonsuk HUH ; Hyojun PARK ; Jin JEGAL ; Inbum LEE ; Jaeman SON ; Seonghee KANG ; Chang Heon CHOI ; Jung-in KIM ; Hyeongmin JIN
Progress in Medical Physics 2024;35(4):116-124
Purpose:
Brachytherapy is essential for treating gynecological cancers as it offers precise radiation delivery to tumors while minimizing radiation exposure to surrounding healthy tissues. The Geneva applicator, introduced in 2020 as a replacement for older models like the Utrecht applicator, enhances MRI-based brachytherapy with improved imaging capabilities and more accurate applicator placement. In 2021, updates to non-reimbursement policies in Korea for MRI-based 3D brachytherapy planning further promoted the adoption of advanced techniques such as the Geneva applicator. This study aims to commission the Geneva applicator, focusing on wall thickness, dummy marker positions, and source dwell positions to ensure accurate dose delivery and safety.
Methods:
The commissioning process involved measuring wall thickness in both the longitudinal and transverse directions for the tandem and lunar-shaped ovoid tubes and comparing thesemeasurements with the manufacturer’s specifications. Dummy marker positions were verifiedusing CT imaging, with a focus on alignment tolerances of ±1 mm. Source dwell positions were planned using the Oncentra treatment planning system, with measurements taken using EBT4 film and analyzed with RIT software.
Results:
Wall thickness measurements and dummy marker positions were within the specified tolerance ranges, confirming their accuracy. The source dwell positions, measured and analyzedthrough multiple tests, were all within the ±1 mm tolerance, ensuring the applicator’s reliability.
Conclusions
The Geneva applicator met all standards for safe and effective use in brachytherapy.The use of a 3D-printed holder was crucial for precise alignment and measurement. With updated reimbursement policies in Korea for MRI-based brachytherapy, the Geneva applicator is expected to significantly impact the future of advanced brachytherapy treatments and research.
5.A Commissioning Report on the Magnetic ResonanceCompatible Geneva Brachytherapy Applicator
Yoonsuk HUH ; Hyojun PARK ; Jin JEGAL ; Inbum LEE ; Jaeman SON ; Seonghee KANG ; Chang Heon CHOI ; Jung-in KIM ; Hyeongmin JIN
Progress in Medical Physics 2024;35(4):116-124
Purpose:
Brachytherapy is essential for treating gynecological cancers as it offers precise radiation delivery to tumors while minimizing radiation exposure to surrounding healthy tissues. The Geneva applicator, introduced in 2020 as a replacement for older models like the Utrecht applicator, enhances MRI-based brachytherapy with improved imaging capabilities and more accurate applicator placement. In 2021, updates to non-reimbursement policies in Korea for MRI-based 3D brachytherapy planning further promoted the adoption of advanced techniques such as the Geneva applicator. This study aims to commission the Geneva applicator, focusing on wall thickness, dummy marker positions, and source dwell positions to ensure accurate dose delivery and safety.
Methods:
The commissioning process involved measuring wall thickness in both the longitudinal and transverse directions for the tandem and lunar-shaped ovoid tubes and comparing thesemeasurements with the manufacturer’s specifications. Dummy marker positions were verifiedusing CT imaging, with a focus on alignment tolerances of ±1 mm. Source dwell positions were planned using the Oncentra treatment planning system, with measurements taken using EBT4 film and analyzed with RIT software.
Results:
Wall thickness measurements and dummy marker positions were within the specified tolerance ranges, confirming their accuracy. The source dwell positions, measured and analyzedthrough multiple tests, were all within the ±1 mm tolerance, ensuring the applicator’s reliability.
Conclusions
The Geneva applicator met all standards for safe and effective use in brachytherapy.The use of a 3D-printed holder was crucial for precise alignment and measurement. With updated reimbursement policies in Korea for MRI-based brachytherapy, the Geneva applicator is expected to significantly impact the future of advanced brachytherapy treatments and research.
6.A Commissioning Report on the Magnetic ResonanceCompatible Geneva Brachytherapy Applicator
Yoonsuk HUH ; Hyojun PARK ; Jin JEGAL ; Inbum LEE ; Jaeman SON ; Seonghee KANG ; Chang Heon CHOI ; Jung-in KIM ; Hyeongmin JIN
Progress in Medical Physics 2024;35(4):116-124
Purpose:
Brachytherapy is essential for treating gynecological cancers as it offers precise radiation delivery to tumors while minimizing radiation exposure to surrounding healthy tissues. The Geneva applicator, introduced in 2020 as a replacement for older models like the Utrecht applicator, enhances MRI-based brachytherapy with improved imaging capabilities and more accurate applicator placement. In 2021, updates to non-reimbursement policies in Korea for MRI-based 3D brachytherapy planning further promoted the adoption of advanced techniques such as the Geneva applicator. This study aims to commission the Geneva applicator, focusing on wall thickness, dummy marker positions, and source dwell positions to ensure accurate dose delivery and safety.
Methods:
The commissioning process involved measuring wall thickness in both the longitudinal and transverse directions for the tandem and lunar-shaped ovoid tubes and comparing thesemeasurements with the manufacturer’s specifications. Dummy marker positions were verifiedusing CT imaging, with a focus on alignment tolerances of ±1 mm. Source dwell positions were planned using the Oncentra treatment planning system, with measurements taken using EBT4 film and analyzed with RIT software.
Results:
Wall thickness measurements and dummy marker positions were within the specified tolerance ranges, confirming their accuracy. The source dwell positions, measured and analyzedthrough multiple tests, were all within the ±1 mm tolerance, ensuring the applicator’s reliability.
Conclusions
The Geneva applicator met all standards for safe and effective use in brachytherapy.The use of a 3D-printed holder was crucial for precise alignment and measurement. With updated reimbursement policies in Korea for MRI-based brachytherapy, the Geneva applicator is expected to significantly impact the future of advanced brachytherapy treatments and research.
7.A Commissioning Report on the Magnetic ResonanceCompatible Geneva Brachytherapy Applicator
Yoonsuk HUH ; Hyojun PARK ; Jin JEGAL ; Inbum LEE ; Jaeman SON ; Seonghee KANG ; Chang Heon CHOI ; Jung-in KIM ; Hyeongmin JIN
Progress in Medical Physics 2024;35(4):116-124
Purpose:
Brachytherapy is essential for treating gynecological cancers as it offers precise radiation delivery to tumors while minimizing radiation exposure to surrounding healthy tissues. The Geneva applicator, introduced in 2020 as a replacement for older models like the Utrecht applicator, enhances MRI-based brachytherapy with improved imaging capabilities and more accurate applicator placement. In 2021, updates to non-reimbursement policies in Korea for MRI-based 3D brachytherapy planning further promoted the adoption of advanced techniques such as the Geneva applicator. This study aims to commission the Geneva applicator, focusing on wall thickness, dummy marker positions, and source dwell positions to ensure accurate dose delivery and safety.
Methods:
The commissioning process involved measuring wall thickness in both the longitudinal and transverse directions for the tandem and lunar-shaped ovoid tubes and comparing thesemeasurements with the manufacturer’s specifications. Dummy marker positions were verifiedusing CT imaging, with a focus on alignment tolerances of ±1 mm. Source dwell positions were planned using the Oncentra treatment planning system, with measurements taken using EBT4 film and analyzed with RIT software.
Results:
Wall thickness measurements and dummy marker positions were within the specified tolerance ranges, confirming their accuracy. The source dwell positions, measured and analyzedthrough multiple tests, were all within the ±1 mm tolerance, ensuring the applicator’s reliability.
Conclusions
The Geneva applicator met all standards for safe and effective use in brachytherapy.The use of a 3D-printed holder was crucial for precise alignment and measurement. With updated reimbursement policies in Korea for MRI-based brachytherapy, the Geneva applicator is expected to significantly impact the future of advanced brachytherapy treatments and research.
8.Absorption Study of Genistein Using Solid Lipid Microparticles and Nanoparticles: Control of Oral Bioavailability by Particle Sizes.
Jeong Tae KIM ; Sonia BARUA ; Hyeongmin KIM ; Seong Chul HONG ; Seung Yup YOO ; Hyojin JEON ; Yeongjin CHO ; Sangwon GIL ; Kyungsoo OH ; Jaehwi LEE
Biomolecules & Therapeutics 2017;25(4):452-459
In this study, the effect of particle size of genistein-loaded solid lipid particulate systems on drug dissolution behavior and oral bioavailability was investigated. Genistein-loaded solid lipid microparticles and nanoparticles were prepared with glyceryl palmitostearate. Except for the particle size, other properties of genistein-loaded solid lipid microparticles and nanoparticles such as particle composition and drug loading efficiency and amount were similarly controlled to mainly evaluate the effect of different particle sizes of the solid lipid particulate systems on drug dissolution behavior and oral bioavailability. The results showed that genistein-loaded solid lipid microparticles and nanoparticles exhibited a considerably increased drug dissolution rate compared to that of genistein bulk powder and suspension. The microparticles gradually released genistein as a function of time while the nanoparticles exhibited a biphasic drug release pattern, showing an initial burst drug release, followed by a sustained release. The oral bioavailability of genistein loaded in solid lipid microparticles and nanoparticles in rats was also significantly enhanced compared to that in bulk powders and the suspension. However, the bioavailability from the microparticles increased more than that from the nanoparticles mainly because the rapid drug dissolution rate and rapid absorption of genistein because of the large surface area of the genistein-solid lipid nanoparticles cleared the drug to a greater extent than the genistein-solid lipid microparticles did. Therefore, the findings of this study suggest that controlling the particle size of solid-lipid particulate systems at a micro-scale would be a promising strategy to increase the oral bioavailability of genistein.
Absorption*
;
Animals
;
Biological Availability*
;
Drug Liberation
;
Genistein*
;
Nanoparticles*
;
Particle Size*
;
Powders
;
Rats
9.Enhanced In Vitro Skin Deposition Properties of Retinyl Palmitate through Its Stabilization by Pectin.
Dong Churl SUH ; Yeongseok KIM ; Hyeongmin KIM ; Jieun RO ; Seong Wan CHO ; Gyiae YUN ; Sung Up CHOI ; Jaehwi LEE
Biomolecules & Therapeutics 2014;22(1):73-77
The purpose of this study was to examine the effect of stabilization of retinyl palmitate (RP) on its skin permeation and distribution profiles. Skin permeation and distribution study were performed using Franz diffusion cells along with rat dorsal skin, and the effect of drug concentration and the addition of pectin on skin deposition profiles of RP was observed. The skin distribution of RP increased in a concentration dependent manner and the formulations containing 0.5 and 1 mg of pectin demonstrated significantly increased RP distributions in the epidermis. Furthermore, it was found that skin distribution of RP could be further improved by combined use of pectin and ascorbyl palmitate (AP), due largely to their anti-oxidative effect. These results clearly demonstrate that the skin deposition properties of RP can be improved by stabilizing RP with pectin. Therefore, it is strongly suggested that pectin could be used in the pharmaceutical and cosmetic formulations as an efficient stabilizing agent and as skin penetration modulator.
Animals
;
Diffusion
;
Epidermis
;
Rats
;
Skin*
10.Enhanced In Vitro Skin Deposition Properties of Retinyl Palmitate through Its Stabilization by Pectin.
Dong Churl SUH ; Yeongseok KIM ; Hyeongmin KIM ; Jieun RO ; Seong Wan CHO ; Gyiae YUN ; Sung Up CHOI ; Jaehwi LEE
Biomolecules & Therapeutics 2014;22(1):73-77
The purpose of this study was to examine the effect of stabilization of retinyl palmitate (RP) on its skin permeation and distribution profiles. Skin permeation and distribution study were performed using Franz diffusion cells along with rat dorsal skin, and the effect of drug concentration and the addition of pectin on skin deposition profiles of RP was observed. The skin distribution of RP increased in a concentration dependent manner and the formulations containing 0.5 and 1 mg of pectin demonstrated significantly increased RP distributions in the epidermis. Furthermore, it was found that skin distribution of RP could be further improved by combined use of pectin and ascorbyl palmitate (AP), due largely to their anti-oxidative effect. These results clearly demonstrate that the skin deposition properties of RP can be improved by stabilizing RP with pectin. Therefore, it is strongly suggested that pectin could be used in the pharmaceutical and cosmetic formulations as an efficient stabilizing agent and as skin penetration modulator.
Animals
;
Diffusion
;
Epidermis
;
Rats
;
Skin*