1.Development of Cryopreserved Red Blood Cell Panels for Verifying ABO and D Blood Grouping Reagents.
Sungwook SONG ; Jonghyeon CHOI ; Sinyoung KIM ; Hyun Ok KIM ; Hyekyoung MIN ; Jaeok KIM ; Won SHIN
Korean Journal of Blood Transfusion 2009;20(1):46-54
BACKGROUND: ABO blood grouping reagent verification is essential to ascertain safe blood transfusions. However, the research use of donated blood products has been hampered in Korea by the blood transfusion law and management policies. In this study, we developed cryopreserved red blood cell (RBC) panels utilizing the high glycerol method to verify the ABO and D blood grouping reagents. In addition, we evaluated the stability of ABO and D antigenicity. METHODS: Fresh blood was frozen by the high glycerol method, aliquoted and cryopreserved in 2 mL cryotubes. Twenty-four vials of bloods with types A (n=5), B (n=5), AB (n=4) and O (n=10) for ABO RBC panels, and eleven vials of blood types D positive (n=5), D negative (n=5) and D weak (n=1) for D RBC panels were established. Potency, avidity and specificity tests were carried out with four different commercial ABO and D blood grouping reagents. RESULTS: The potency of cryopreserved RBCs after thawing showed no statistical difference compared with pre-freezing RBCs. Avidity time measurements were 5 seconds in ABO blood and 20 seconds in D positive blood. Specificity test uniformly showed 100% specificity. When thawed RBCs were stored at 4degrees C for 7 days, the potency test measured at intervals of 2 days showed no variation. CONCLUSION: Cryopreserved RBC panels produced by the high glycerol method showed excellent results in stability test with reagents produced by manufacturers in Korea. Therefore, these panels can be utilized as a reliable method of verifying blood grouping reagents.
Blood Grouping and Crossmatching
;
Blood Transfusion
;
Erythrocytes
;
Glycerol
;
Indicators and Reagents
;
Jurisprudence
;
Korea
;
Sensitivity and Specificity
2.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
3.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
4.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
5.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.
6.Development and Application of New Risk-Adjustment Models to Improve the Current Model for Hospital Standardized Mortality Ratio in South Korea
Hyeki PARK ; Ji-Sook CHOI ; Min Sun SHIN ; Soomin KIM ; Hyekyoung KIM ; Nahyeong IM ; Soon Joo PARK ; Donggyo SHIN ; Youngmi SONG ; Yunjung CHO ; Hyunmi JOO ; Hyeryeon HONG ; Yong-Hwa HWANG ; Choon-Seon PARK
Yonsei Medical Journal 2025;66(3):179-186
Purpose:
This study assessed the validity of the hospital standardized mortality ratio (HSMR) risk-adjusted model by comparing models that include clinical information and the current model based on administrative information in South Korea.
Materials and Methods:
The data of 53976 inpatients were analyzed. The current HSMR risk-adjusted model (Model 1) adjusts for sex, age, health coverage, emergency hospitalization status, main diagnosis, surgery status, and Charlson Comorbidity Index (CCI) using administrative data. As candidate variables, among clinical information, the American Society of Anesthesiologists score, Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) 3, present on admission CCI, and cancer stage were collected. Surgery status, intensive care in the intensive care unit, and CCI were selected as proxy variables among administrative data. In-hospital death was defined as the dependent variable, and a logistic regression analysis was performed. The statistical performance of each model was compared using C-index values.
Results:
There was a strong correlation between variables in the administrative data and those in the medical records. The C-index of the existing model (Model 1) was 0.785; Model 2, which included all clinical data, had a higher C-index of 0.857. In Model 4, in which APACHE II and SAPS 3 were replaced with variables recorded in the administrative data from Model 2, the C-index further increased to 0.863.
Conclusion
The HSMR assessment model improved when clinical data were adjusted. Simultaneously, the validity of the evaluation method could be secured even if some of the clinical information was replaced with the information in the administrative data.