1.Evaluating the Influence of Scan Timing on Dosimetric Accuracy in EBT3 and EBT4 Radiochromic Films
Jin Dong CHO ; Su Chul HAN ; Jason Joon Bock LEE ; Hyebin LEE ; Heerim NAM
Progress in Medical Physics 2024;35(4):135-144
Purpose:
This study compares the dosimetric properties of EBT3 and EBT4 GAFchromic films in transmission and reflection scanning modes, focusing on dose response, sensitivity, and postirradiation stability.
Methods:
The EBT3 and EBT4 films were irradiated at doses of 0–10 Gy using a Varian TrueBeam linear accelerator at 6 MV. The films were scanned at intervals between 1 and 336 hours after irradiation in both transmission and reflection modes. Net optical density (NetOD) values from each scan were used to evaluate dose response and sensitivity, with calibration curves created for each film and scan mode. Dose differences between calculated and delivered doses were assessed over time.
Results:
The EBT3 and EBT4 films exhibited similar dose–response curves and stable NetOD values across both scanning modes. However, EBT4 exhibited reduced sensitivity variability in response to dose changes. After irradiation, NetOD values increased up to 24 hours before stabilizing, suggesting that a 24-hour scan time is sufficient for consistent measurements. Dose differences between films and modes remained within ±4%.
Conclusions
EBT4 offers comparable dosimetric performance to EBT3, with additional benefits, such as improved dose–response linearity and reduced sensitivity fluctuations. The findings indicate that EBT4 can serve as a reliable successor to EBT3.
2.Evaluating the Influence of Scan Timing on Dosimetric Accuracy in EBT3 and EBT4 Radiochromic Films
Jin Dong CHO ; Su Chul HAN ; Jason Joon Bock LEE ; Hyebin LEE ; Heerim NAM
Progress in Medical Physics 2024;35(4):135-144
Purpose:
This study compares the dosimetric properties of EBT3 and EBT4 GAFchromic films in transmission and reflection scanning modes, focusing on dose response, sensitivity, and postirradiation stability.
Methods:
The EBT3 and EBT4 films were irradiated at doses of 0–10 Gy using a Varian TrueBeam linear accelerator at 6 MV. The films were scanned at intervals between 1 and 336 hours after irradiation in both transmission and reflection modes. Net optical density (NetOD) values from each scan were used to evaluate dose response and sensitivity, with calibration curves created for each film and scan mode. Dose differences between calculated and delivered doses were assessed over time.
Results:
The EBT3 and EBT4 films exhibited similar dose–response curves and stable NetOD values across both scanning modes. However, EBT4 exhibited reduced sensitivity variability in response to dose changes. After irradiation, NetOD values increased up to 24 hours before stabilizing, suggesting that a 24-hour scan time is sufficient for consistent measurements. Dose differences between films and modes remained within ±4%.
Conclusions
EBT4 offers comparable dosimetric performance to EBT3, with additional benefits, such as improved dose–response linearity and reduced sensitivity fluctuations. The findings indicate that EBT4 can serve as a reliable successor to EBT3.
3.Evaluating the Influence of Scan Timing on Dosimetric Accuracy in EBT3 and EBT4 Radiochromic Films
Jin Dong CHO ; Su Chul HAN ; Jason Joon Bock LEE ; Hyebin LEE ; Heerim NAM
Progress in Medical Physics 2024;35(4):135-144
Purpose:
This study compares the dosimetric properties of EBT3 and EBT4 GAFchromic films in transmission and reflection scanning modes, focusing on dose response, sensitivity, and postirradiation stability.
Methods:
The EBT3 and EBT4 films were irradiated at doses of 0–10 Gy using a Varian TrueBeam linear accelerator at 6 MV. The films were scanned at intervals between 1 and 336 hours after irradiation in both transmission and reflection modes. Net optical density (NetOD) values from each scan were used to evaluate dose response and sensitivity, with calibration curves created for each film and scan mode. Dose differences between calculated and delivered doses were assessed over time.
Results:
The EBT3 and EBT4 films exhibited similar dose–response curves and stable NetOD values across both scanning modes. However, EBT4 exhibited reduced sensitivity variability in response to dose changes. After irradiation, NetOD values increased up to 24 hours before stabilizing, suggesting that a 24-hour scan time is sufficient for consistent measurements. Dose differences between films and modes remained within ±4%.
Conclusions
EBT4 offers comparable dosimetric performance to EBT3, with additional benefits, such as improved dose–response linearity and reduced sensitivity fluctuations. The findings indicate that EBT4 can serve as a reliable successor to EBT3.
4.Evaluating the Influence of Scan Timing on Dosimetric Accuracy in EBT3 and EBT4 Radiochromic Films
Jin Dong CHO ; Su Chul HAN ; Jason Joon Bock LEE ; Hyebin LEE ; Heerim NAM
Progress in Medical Physics 2024;35(4):135-144
Purpose:
This study compares the dosimetric properties of EBT3 and EBT4 GAFchromic films in transmission and reflection scanning modes, focusing on dose response, sensitivity, and postirradiation stability.
Methods:
The EBT3 and EBT4 films were irradiated at doses of 0–10 Gy using a Varian TrueBeam linear accelerator at 6 MV. The films were scanned at intervals between 1 and 336 hours after irradiation in both transmission and reflection modes. Net optical density (NetOD) values from each scan were used to evaluate dose response and sensitivity, with calibration curves created for each film and scan mode. Dose differences between calculated and delivered doses were assessed over time.
Results:
The EBT3 and EBT4 films exhibited similar dose–response curves and stable NetOD values across both scanning modes. However, EBT4 exhibited reduced sensitivity variability in response to dose changes. After irradiation, NetOD values increased up to 24 hours before stabilizing, suggesting that a 24-hour scan time is sufficient for consistent measurements. Dose differences between films and modes remained within ±4%.
Conclusions
EBT4 offers comparable dosimetric performance to EBT3, with additional benefits, such as improved dose–response linearity and reduced sensitivity fluctuations. The findings indicate that EBT4 can serve as a reliable successor to EBT3.
5.Evaluating the Influence of Scan Timing on Dosimetric Accuracy in EBT3 and EBT4 Radiochromic Films
Jin Dong CHO ; Su Chul HAN ; Jason Joon Bock LEE ; Hyebin LEE ; Heerim NAM
Progress in Medical Physics 2024;35(4):135-144
Purpose:
This study compares the dosimetric properties of EBT3 and EBT4 GAFchromic films in transmission and reflection scanning modes, focusing on dose response, sensitivity, and postirradiation stability.
Methods:
The EBT3 and EBT4 films were irradiated at doses of 0–10 Gy using a Varian TrueBeam linear accelerator at 6 MV. The films were scanned at intervals between 1 and 336 hours after irradiation in both transmission and reflection modes. Net optical density (NetOD) values from each scan were used to evaluate dose response and sensitivity, with calibration curves created for each film and scan mode. Dose differences between calculated and delivered doses were assessed over time.
Results:
The EBT3 and EBT4 films exhibited similar dose–response curves and stable NetOD values across both scanning modes. However, EBT4 exhibited reduced sensitivity variability in response to dose changes. After irradiation, NetOD values increased up to 24 hours before stabilizing, suggesting that a 24-hour scan time is sufficient for consistent measurements. Dose differences between films and modes remained within ±4%.
Conclusions
EBT4 offers comparable dosimetric performance to EBT3, with additional benefits, such as improved dose–response linearity and reduced sensitivity fluctuations. The findings indicate that EBT4 can serve as a reliable successor to EBT3.
6.Tumor Volume Reduction Rate during Adaptive Radiation Therapy as a Prognosticator for Nasopharyngeal Cancer.
Hyebin LEE ; Yong Chan AHN ; Dongryul OH ; Heerim NAM ; Jae Myoung NOH ; Su Yeon PARK
Cancer Research and Treatment 2016;48(2):537-545
PURPOSE: The purpose of this study is to evaluate the prognostic significance of the tumor volume reduction rate (TVRR) measured during adaptive definitive radiation therapy (RT) for nasopharyngeal cancer (NPC). MATERIALS AND METHODS: We reviewed the RT records of 159 NPC patients treated with definitive RT with or without concurrent chemotherapy between January 2006 and February 2013. Adaptive re-planning was performed in all patients at the third week of RT. The pre- and mid-RT gross tumor volumes (GTVs) of the primary tumor and the metastatic lymph nodes were measured and analyzed for prognostic implications. RESULTS: After a median follow-up period of 41.5 months (range, 11.2 to 91.8 months) for survivors, there were 43 treatment failures. The overall survival and progression-free survival (PFS) rates at 5 years were 89.6% and 69.7%, respectively. The mean pre-RT GTV, mid-RT GTV, and TVRR were 45.9 cm3 (range, 1.5 to 185.3 cm3), 26.7 cm3 (1.0 to 113.8 cm3), and -41.9% (range, -87% to 78%), respectively. Patients without recurrence had higher TVRR than those with recurrence (44.3% in the no recurrence group vs. 34.0% in the recurrence group, p=0.004), and those with TVRR > 35% achieved a significantly higher rate of PFS at 5 years (79.2% in TVRR > 35% vs. 53.2% in TVRR ≤ 35%; p < 0.001). In multivariate analysis, TVRR was a significant factor affecting PFS (hazard ratio, 2.877; 95% confidence interval, 1.555 to 5.326; p=0.001). CONCLUSION: TVRR proved to be a significant prognostic factor in NPC patients treated with definitive RT, and could be used as a potential indicator for early therapeutic modification during the RT course.
Disease-Free Survival
;
Drug Therapy
;
Follow-Up Studies
;
Humans
;
Lymph Nodes
;
Multivariate Analysis
;
Nasopharyngeal Neoplasms*
;
Radiotherapy
;
Recurrence
;
Survivors
;
Treatment Failure
;
Tumor Burden*
7.Radiation sigmoiditis mimicking sigmoid colon cancer after radiation therapy for cervical cancer: the implications of three-dimensional image-based brachytherapy planning.
Hyebin LEE ; Seung Jae HUH ; Dongryul OH ; Bae Kwon JEONG ; Sang Gyu JU
Journal of Gynecologic Oncology 2012;23(3):197-200
External-beam radiation therapy with intracavitary high-dose-rate brachytherapy is the standard treatment modality for advanced cervical cancer; however, late gastrointestinal complications are a major concern after radiotherapy. While radiation proctitis is a well-known side effect and radiation oncologists make an effort to reduce it, the sigmoid colon is often neglected as an organ at risk. Herein, we report two cases of radiation sigmoiditis mimicking sigmoid colon cancer after external-beam radiation therapy with intracavitary high-dose-rate brachytherapy for uterine cervical cancer with dosimetric consideration.
Brachytherapy
;
Colon, Sigmoid
;
Proctitis
;
Sigmoid Neoplasms
;
Uterine Cervical Neoplasms
8.Convolutional Neural Network-Based Automatic Segmentation of Substantia Nigra on Nigrosome and Neuromelanin Sensitive MR Images
Junghwa KANG ; Hyeonha KIM ; Eunjin KIM ; Eunbi KIM ; Hyebin LEE ; Na-young SHIN ; Yoonho NAM
Investigative Magnetic Resonance Imaging 2021;25(3):156-163
Recently, neuromelanin and nigrosome imaging techniques have been developed to evaluate the substantia nigra in Parkinson’s disease. Previous studies have shown potential benefits of quantitative analysis of neuromelanin and nigrosome images in the substantia nigra, although visual assessments have been performed to evaluate structures in most studies. In this study, we investigate the potential of using deep learning based automatic region segmentation techniques for quantitative analysis of the substantia nigra. The deep convolutional neural network was trained to automatically segment substantia nigra regions on 3D nigrosome and neuromelanin sensitive MR images obtained from 30 subjects. With a 5-fold cross-validation, the mean calculated dice similarity coefficient between manual and deep learning was 0.70 ± 0.11. Although calculated dice similarity coefficients were relatively low due to empirically drawn margins, selected slices were overlapped for more than two slices of all subjects. Our results demonstrate that deep convolutional neural network-based method could provide reliable localization of substantia nigra regions on neuromelanin and nigrosome sensitive MR images.
9.Convolutional Neural Network-Based Automatic Segmentation of Substantia Nigra on Nigrosome and Neuromelanin Sensitive MR Images
Junghwa KANG ; Hyeonha KIM ; Eunjin KIM ; Eunbi KIM ; Hyebin LEE ; Na-young SHIN ; Yoonho NAM
Investigative Magnetic Resonance Imaging 2021;25(3):156-163
Recently, neuromelanin and nigrosome imaging techniques have been developed to evaluate the substantia nigra in Parkinson’s disease. Previous studies have shown potential benefits of quantitative analysis of neuromelanin and nigrosome images in the substantia nigra, although visual assessments have been performed to evaluate structures in most studies. In this study, we investigate the potential of using deep learning based automatic region segmentation techniques for quantitative analysis of the substantia nigra. The deep convolutional neural network was trained to automatically segment substantia nigra regions on 3D nigrosome and neuromelanin sensitive MR images obtained from 30 subjects. With a 5-fold cross-validation, the mean calculated dice similarity coefficient between manual and deep learning was 0.70 ± 0.11. Although calculated dice similarity coefficients were relatively low due to empirically drawn margins, selected slices were overlapped for more than two slices of all subjects. Our results demonstrate that deep convolutional neural network-based method could provide reliable localization of substantia nigra regions on neuromelanin and nigrosome sensitive MR images.
10.Clinical outcomes of stereotactic body radiotherapy for spinal metastases from hepatocellular carcinoma.
Eonju LEE ; Tae Gyu KIM ; Hee Chul PARK ; Jeong Il YU ; Do Hoon LIM ; Heerim NAM ; Hyebin LEE ; Joon Hyeok LEE
Radiation Oncology Journal 2015;33(3):217-225
PURPOSE: To investigate the outcomes of patients with spinal metastases from hepatocellular carcinoma (HCC), who were treated by stereotactic body radiotherapy (SBRT). MATERIALS AND METHODS: This retrospective study evaluated 23 patients who underwent SBRT from October 2008 to August 2012 for 36 spinal metastases from HCC. SBRT consisted of approximately 2 fractionation schedules, which were 18 to 40 Gy in 1 to 4 fractions for group A lesions (n = 15) and 50 Gy in 10 fractions for group B lesions (n = 21). RESULTS: The median follow-up period was 7 months (range, 2 to 16 months). Seven patients developed grade 1 or 2 gastrointestinal toxicity, and one developed grade 2 leucopenia. Compression fractures occurred in association with 25% of the lesions, with a median time to fracture of 2 months. Pain relief occurred in 92.3% and 68.4% of group A and B lesions, respectively. Radiologic response (complete and partial response) occurred in 80.0% and 61.9% of group A and B lesions, respectively. The estimated 1-year spinal-tumor progression-free survival rate was 78.5%. The median overall survival period and 1-year overall survival rate were 9 months (range, 2 to 16 months) and 25.7%, respectively. CONCLUSION: SBRT for spinal metastases from HCC is well tolerated and effective at providing pain relief and radiologic response. Because compression fractures develop at a high rate following SBRT for spinal metastases from primary HCC, careful follow up of the patient is required.
Appointments and Schedules
;
Carcinoma, Hepatocellular*
;
Disease-Free Survival
;
Follow-Up Studies
;
Fractures, Compression
;
Humans
;
Neoplasm Metastasis*
;
Radiosurgery*
;
Retrospective Studies
;
Survival Rate