1.Cdo Is Required for Efficient Motor Neuron Generation of Embryonic Stem Cells
Hyebeen KIM ; Seul-Yi LEE ; Hyeon-Ju JEONG ; Jong-Sun KANG ; Hana CHO ; Young-Eun LEEM
International Journal of Stem Cells 2020;13(3):342-352
Background and Objectives:
The directed differentiation of pluripotent stem cells into motor neurons is critical for the development of disease modelling and therapeutics to intervene degenerative motor neuron diseases. Cell surface receptor Cdo functions as a coreceptor for Sonic hedgehog (Shh) with Boc and Gas1 in the patterning of ventral spinal cord neurons including motor neurons. However, the discrete function of Cdo is not fully understood.
Methods:
and Results: In this study, we examined the role of Cdo in motor neuron generation by utilizing in vitro differentiation of Cdo+/+ and Cdo−/− embryonic stem cells (ESCs). In response to Shh, Cdo−/− ESCs exhibited impaired expression of motor neuron specification markers while dorsal interneuron specification markers were significantly increased, compared to Cdo+/+ ESCs. Reactivation of Shh signalling pathway with Smoothened (Smo) agonist (SAG) restored motor neuron specification in Cdo−/− ESCs. In addition, electrophysiological analysis revealed the immature electrical features of Cdo−/− ESCs-derived neurons which was restored by SAG.
Conclusions
Taken together, these data suggest that Cdo as a Shh coreceptor is required for the induction of motor neuron generation by fully activating Shh signalling pathway and provide additional insights into the biology of motor neuron development.
2.Deletion Timing of Cic Alleles during Hematopoiesis Determines the Degree of Peripheral CD4+ T Cell Activation and Proliferation
Guk-Yeol PARK ; Gil-Woo LEE ; Soeun KIM ; Hyebeen HONG ; Jong Seok PARK ; Jae-Ho CHO ; Yoontae LEE
Immune Network 2020;20(5):e43-
Capicua (CIC) is a transcriptional repressor that regulates several developmental processes. CIC deficiency results in lymphoproliferative autoimmunity accompanied by expansion of CD44hiCD62Llo effector/memory and follicular Th cell populations. Deletion of Cic alleles in hematopoietic stem cells (Vav1-Cre-mediated knockout of Cic) causes more severe autoimmunity than that caused by the knockout of Cic in CD4+CD8+ double positive thymocytes (Cd4-Cre-mediated knockout of Cic). In this study, we compared splenic CD4+ T cell activation and proliferation between whole immune cell-specific Cic-null (Cicf/f;Vav1-Cre) and T cell-specific Cic-null (Cicf/f;Cd4-Cre) mice. Hyperactivation and hyperproliferation of CD4+ T cells were more apparent in Cicf/f;Vav1-Cre mice than in Cicf/f;Cd4-Cre mice. Cicf/f;Vav1-Cre CD4+ T cells more rapidly proliferated and secreted larger amounts of IL-2 upon TCR stimulation than did Cicf/f;Cd4-Cre CD4+ T cells, while the TCR stimulation-induced activation of the TCR signaling cascade and calcium flux were comparable between them. Mixed wild-type and Cicf/f;Vav1-Cre bone marrow chimeras also exhibited more apparent hyperactivation and hyperproliferation of Cic-deficient CD4+ T cells than did mixed wild-type and Cicf/f;Cd4-Cre bone marrow chimeras. Taken together, our data demonstrate that CIC deficiency at the beginning of T cell development endows peripheral CD4+ T cells with enhanced T cell activation and proliferative capability.