1.Effect of L-tyrosine on 3beta-HSD activity of rat luteal cells in vitro.
Hui-ping WANG ; Jiang NI ; Zhi-ping CHENG
Chinese Journal of Applied Physiology 2004;20(2):190-193
AIMTo study the effects of L-tyrosine on 3beta-HSD activity of rat luteal cells in vitro.
METHODSLuteal cells were isolated from ovary tissues of female rats pretreated with PMSG and hCG. Luteal cells were cultured with 95% oxygen and 5% carbon dioxide in 37 degrees C. 3beta-HSD activity was measured by radioimmunoassay (RIA).
RESULTS(1) 0.2 mmol x L(-1) and 2.0 mmol x L(-1) L-tyrosine significantly inhibited 3beta-HSD activity. (2) 0.2 mmol x L(-1) L-tyrosine exerted different effects on 3beta-HSD activity at different concentrations of pregnenolone (Ph). It increased 3beta-HSD activity at 0.1 micromol x L(-1) and 1 micromol x L(-1) of Pn concentration. With further increase in the concentration of Pn to 100 micromol x L(-1), the stimulating effect of L-tyrosine was switched to suppression effect. (3) L-tyrosine and L-tyrosine hydrazide both inhibited 3beta-HSD activity induced by hCG.
CONCLUSIONL-tyrosine affects 3beta-HSD activity of rat luteal cells in vitro. L-tyrosine and tyrosine hydrazide inhibits hCG induced 3beta-HSD activity.
3-Hydroxysteroid Dehydrogenases ; metabolism ; Animals ; Cells, Cultured ; Female ; Luteal Cells ; drug effects ; enzymology ; Rats ; Rats, Wistar ; Tyrosine ; pharmacology
2.Carbon Chain Length Determines Inhibitory Potency of Perfluoroalkyl Sulfonic Acids on Human Placental 3β-Hydroxysteroid Dehydrogenase 1: Screening, Structure-Activity Relationship, and In Silico Analysis.
Lu Ming TANG ; Bai Ping MAO ; Bing Ru ZHANG ; Jing Jing LI ; Yun Bing TANG ; Hui Tao LI ; Ren Shan GE
Biomedical and Environmental Sciences 2023;36(11):1015-1027
OBJECTIVE:
This study aimed to compare 9 perfluoroalkyl sulfonic acids (PFSA) with carbon chain lengths (C4-C12) to inhibit human placental 3β-hydroxysteroid dehydrogenase 1 (3β-HSD1), aromatase, and rat 3β-HSD4 activities.
METHODS:
Human and rat placental 3β-HSDs activities were determined by converting pregnenolone to progesterone and progesterone secretion in JEG-3 cells was determined using HPLC/MS-MS, and human aromatase activity was determined by radioimmunoassay.
RESULTS:
PFSA inhibited human 3β-HSD1 structure-dependently in the order: perfluorooctanesulfonic acid (PFOS, half-maximum inhibitory concentration, IC 50: 9.03 ± 4.83 μmol/L) > perfluorodecanesulfonic acid (PFDS, 42.52 ± 8.99 μmol/L) > perfluoroheptanesulfonic acid (PFHpS, 112.6 ± 29.39 μmol/L) > perfluorobutanesulfonic acid (PFBS) = perfluoropentanesulfonic acid (PFPS) = perfluorohexanesulfonic acid (PFHxS) = perfluorododecanesulfonic acid (PFDoS) (ineffective at 100 μmol/L). 6:2FTS (1H, 1H, 2H, 2H-perfluorooctanesulfonic acid) and 8:2FTS (1H, 1H, 2H, 2H-perfluorodecanesulfonic acid) did not inhibit human 3β-HSD1. PFOS and PFHpS are mixed inhibitors, whereas PFDS is a competitive inhibitor. Moreover, 1-10 μmol/L PFOS and PFDS significantly reduced progesterone biosynthesis in JEG-3 cells. Docking analysis revealed that PFSA binds to the steroid-binding site of human 3β-HSD1 in a carbon chain length-dependent manner. All 100 μmol/L PFSA solutions did not affect rat 3β-HSD4 and human placental aromatase activity.
CONCLUSION
Carbon chain length determines inhibitory potency of PFSA on human placental 3β-HSD1 in a V-shaped transition at PFOS (C8), with inhibitory potency of PFOS > PFDS > PFHpS > PFBS = PFPS = PFHxS = PFDoS = 6:2FTS = 8:2FTS.
Humans
;
Pregnancy
;
Female
;
Rats
;
Animals
;
Placenta
;
Progesterone/pharmacology*
;
Aromatase/pharmacology*
;
Cell Line, Tumor
;
Fluorocarbons
;
Alkanesulfonic Acids
;
Structure-Activity Relationship
;
Hydroxysteroid Dehydrogenases/pharmacology*
3.Expression of 17 beta-hydroxysteroid dehydrogenase type 1 in the kidney of rats: the capacity of the kidney for synthesizing sex hormones.
Zhe ZHANG ; Hong-Zhu WANG ; Yong-Hui LIU ; Yu PENG ; Qing-Lian ZHENG
Journal of Southern Medical University 2016;36(2):265-268
OBJECTIVETo investigate the expression of 17 beta-hydroxysteroid dehydrogenase type 1 (17β-HSD1) in the kidney of rats and explore the capacity of the kidney for synthesizing sex hormones.
METHODSThe expressions of 17-HSD1 and sex hormones were detected by Western blotting and radioimmunoassay in rat renal cells in primary cultured for 24 and 48 h in the presence or absence of follicle-stimulating hormone (FSH) and luteinizing hormone (LH).
RESULTSAfter cell culture for 24 h, the primary rat renal cells expressed a low level of 17β-HSD1 (0.1843±0.076), which increased to 1.6651±0.044 (P<0.01) in response to co-stimulation by FSH and LH. Low levels of estradiol, progesterone and testosterone were also detected in rat renal cells (3.30±3.78, 62.60±12.33, and 22.12±3.36, respectively), and co-stimulation of FSH and LH significantly increased their levels to 8.50±2.64, 117.80±9.79, and 45.04±4.39, respectively (P<0.05). The levels of these hormones showed no significant differences between cells cultured for 24 h and 48 h (P>0.05).
CONCLUSIONThe rat renal cells express 17β-HSD1 and are capable of stably secreting sex hormones in response to co-stimulation with FSH and LH, suggesting the capacity of the rat kidneys for synthesizing sex hormones. These findings enrich the understanding of the endocrine function of the kidney.
17-Hydroxysteroid Dehydrogenases ; metabolism ; Animals ; Cells, Cultured ; Estradiol ; biosynthesis ; Follicle Stimulating Hormone ; pharmacology ; Kidney ; enzymology ; Luteinizing Hormone ; pharmacology ; Progesterone ; biosynthesis ; Rats ; Testosterone ; biosynthesis
4.Protective effect of ascorbic acid on cyclophosphamide- induced testicular gametogenic and androgenic disorders in male rats.
Ujjal Baran DAS ; Mousumi MALLICK ; Jogendra Mohan DEBNATH ; Debidas GHOSH
Asian Journal of Andrology 2002;4(3):201-207
AIMTo study the detrimental effects of cyclophosphamide on the testicular androgenic and gametogenic activities through endocrine inhibition and/or induction of oxidative stress in male albino rats and to evaluate the protective effect of ascorbic acid.
METHODSThe testicular D5, 3b-hydroxysteroid dehydrogenase (HSD), 17b-HSD, peroxidase and catalase activities along with the levels of malondialdehyde (MDA) and conjugated dienes in testicular tissue were measured for the evaluation of testicular oxidative stress. The plasma testosterone (T) level was measured by immunoassay. Various germ cells at stage VII of spermatogenic cycle were quantified from testicular stained sections.
RESULTSCyclophosphamide treatment results in a significant inhibition in the testicular D5, 3b-HSD and 17b-HSD activities, a decrease in plasma T level and a diminution in the counts of various germ cells. Moreover, this treatment was also associated with a significant inhibition of the peroxidase and catalase activities along with high levels of MDA and conjugated dienes in the testis. All these changes were reversed by ascorbic acid co-administration.
CONCLUSIONCyclophosphamide treatment at the dosage used caused testicular gametogenic and androgenic disorders as well as induced testicular oxidative stress that can be reversed by ascorbic acid co-administration.
Animals ; Antioxidants ; pharmacology ; Ascorbic Acid ; pharmacology ; Body Weight ; Catalase ; metabolism ; Cyclophosphamide ; pharmacology ; Hydroxysteroid Dehydrogenases ; metabolism ; Infertility, Male ; chemically induced ; drug therapy ; Lipid Peroxidation ; drug effects ; Male ; Mutagens ; pharmacology ; Peroxidase ; metabolism ; Rats ; Rats, Wistar ; Spermatogenesis ; drug effects ; Testosterone ; blood
5.Effect of genistein combined with anastrozole on mammary tumors in ovariectomized rats.
Li WANG ; Xin-Mei KANG ; Ying SONG ; Wen-Jie MA ; Hong ZHAO ; Qing-Yuan ZHANG
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(4):486-489
OBJECTIVETo evaluate the inhibitory effect of genistin combined with anastrozole on the growth and apoptosis of breast tumor tissue, and to study their anti-cancer mechanism by using the model of 7,12-dimethylbenz [alpha] anthracene (DMBA)-induced mammary tumors following ovariectomy in Sprague-Dawley (SD) rats.
METHODSThe DMBA induced postmenopausal SD rats were randomly divided into the control group, the genistein group, the anastrozole group, and the genistein combined with anastrozole group. The growth of tumors was observed in each group. The proliferation index and apoptosis index of tumor cells were determined. Moreover, estradiol (E2) and 17beta-HSD1 mRNA levels were determined by ELISA and RT-PCR respectively.
RESULTSThe tumor growth was inhibited in the genistein group and the anastrozole group. The inhibitory ratio was significantly higher in the genistein combined with anastrozole group (P < 0.05). Compared with the control group, levels of E2 and 17beta-HSD1 mRNA decreased more significantly in the genistein combined with anastrozole group (P < 0.05).
CONCLUSIONSGenistein could suppress the growth of mammary tumors in postmenopausal rats. It showed synergistic effect when combined with anastrozole, which resulted in reduced levels of E2 and 17beta-HSD1 mRNA. It had inhibitory effect on the growth of breast tumors.
17-Hydroxysteroid Dehydrogenases ; metabolism ; Animals ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Estradiol ; metabolism ; Female ; Genistein ; administration & dosage ; pharmacology ; Mammary Neoplasms, Experimental ; chemically induced ; pathology ; Nitriles ; administration & dosage ; pharmacology ; Ovariectomy ; Postmenopause ; Rats ; Rats, Sprague-Dawley ; Triazoles ; administration & dosage ; pharmacology
6.Colocalization of 11beta-hydroxysteroid dehydrogenase type I and glucocorticoid receptor and its significance in rat hippocampus.
Shun-Lun WAN ; Mao-Yao LIAO ; Ru-Song HAO ; Zhao-Feng LI ; Gang SUN
Acta Physiologica Sinica 2002;54(6):473-478
This paper was designed to observe the colocalization of 11beta-HSD1 and GR, and its significance in the rat hippocampus. Immunocytochemical dual-staining showed that not only 11beta-HSD1 but also GR immunoreactive substances were present in the cultured rat hippocampal neurons. Moreover, they were colocalized in the same hippocampal neuron. Synthetic glucocorticoid dexamethasone (DEX) up-regulated the protein expression and activity of 11beta-HSD1 in the cultured hippocampal neurons, as determined by Western blot and thin layer chromatography (TLC) respectively. The transfection of PC12 cells with the plasmid containing promoter sequence of 11beta-HSD1 gene and the reporter gene of CAT enzyme was conducted. DEX up-regulated the reporter gene expression in the system described above. The up-regulation of 11beta-HSD1 and reporter gene expression induced by DEX were both blocked by GR antagonist RU38486. Our study suggests that the colocalization of 11beta-HSD1 and GR in the hippocampus may be implicated in the up-regulation of 11beta-HSD1 expression by glucocorticoids combining to its promoter region, which in turn produces more biologically active glucocorticoids necessary for the binding of low affinity of GR.
11-beta-Hydroxysteroid Dehydrogenases
;
genetics
;
metabolism
;
Animals
;
Animals, Newborn
;
Dexamethasone
;
pharmacology
;
Gene Expression Regulation
;
Hippocampus
;
cytology
;
metabolism
;
Mifepristone
;
pharmacology
;
Neurons
;
chemistry
;
metabolism
;
PC12 Cells
;
Promoter Regions, Genetic
;
Rats
;
Receptors, Glucocorticoid
;
genetics
;
metabolism
;
Transfection
7.The culture and identification of rat testis Leydig cell.
Jian-zhong LIU ; Hai-bin GUO ; Chun-huaz DENG ; Yong-hong OU ; Ai-ping PENG
National Journal of Andrology 2006;12(1):14-17
OBJECTIVETo establish a primary culture method of rat testis Leydig cell.
METHODSThe primary rat Leydig cells were treated with or without 4 U/ml human chorionic gonadotropin (hCG), and testosterone in culture medium was detected by radioimmunoassay. The morphology and biological characteristics of Leydig cell were observed.
RESULTSThe culture cells were highly homogeneous, proliferative and had a high differentiation rate. The high purified Leydig cells were verified by their dynamic morphological changes and 3beta-hydroxysteroid dehydrogenase delta4-delta5 isomerase (3beta-HSD) histochemical staining. The testosterone secretion induced by hCG significantly increased (P < 0.05) 24 hours after inoculation than that induced without hCG in the control.
CONCLUSIONIt suggests that the Leydig cell cultured in vitro may secrete high concentration of testosterone, and this study laid the basis of androgen replacement therapy for partial androgen deficiency in aging male.
3-Hydroxysteroid Dehydrogenases ; Animals ; Cell Culture Techniques ; Cells, Cultured ; Chorionic Gonadotropin ; pharmacology ; Humans ; Leydig Cells ; cytology ; drug effects ; secretion ; Male ; Rats ; Rats, Sprague-Dawley ; Testis ; cytology ; drug effects ; Testosterone ; metabolism
8.Di(2-ethylhexyl) phthalate affects the testes and leydig cells of neonatal KM mice.
Xiao-feng SONG ; Guang-hui WEI ; Yong-ji DENG ; Xuan CHEN ; Xing LIU ; De-ying ZHANG
National Journal of Andrology 2006;12(9):775-779
OBJECTIVETo explore the effects of di(2-ethylhexyl)phthalate (DEHP) on neonatal mice's testes and Leydig cells in vivo.
METHODSPregnant mice were exposed to DEHP at the dose of 100 mg/kg, 200 mg/kg or 500 mg/kg (body weight) per day by gavage from gestation day 12 (GD 12) through postnatal day 3 (PND 3), respectively. The testis and body weights, testicular histopathology and the activity of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) of the neonatal mice were investigated.
RESULTSThe body and testis weights of the male mice's offspring were significantly reduced following DEHP exposure. Leydig cell morphology was affected significantly by DEHP as compared with the controls. Leydig cells obviously increased in the neonatal mice's testes on PND 15 and PND 30 when exposed to DEHP (500 mg/[kg x d]). Activities and positive area of the steroidogenic enzymes 3beta-HSD immunoexpression decreased markedly when exposed to DEHP (100 mg/[kg x d] or 200 mg/[kg x d]). Image analysis showed a decrease in the activities of 3beta-HSD in the animals exposed to DEHP (500 mg/[kg x d]), but an increase in the positive area of 3beta-HSD immunoexpression as compared with the control animals on PND 15 (P < 0.01).
CONCLUSIONDEHP affects the Leydig cell morphology, the activity of 3beta-HSD, the testis and body weights and the testicular histopathology of neonatal mice, and it may function as an antiandrogenic agent.
3-Hydroxysteroid Dehydrogenases ; metabolism ; Animals ; Animals, Newborn ; Diethylhexyl Phthalate ; pharmacology ; Dose-Response Relationship, Drug ; Female ; Leydig Cells ; cytology ; drug effects ; Male ; Mice ; Mice, Inbred Strains ; Pregnancy ; Prenatal Exposure Delayed Effects ; Testis ; drug effects
9.Ginkgo biloba extract enhances testosterone synthesis of Leydig cells in type 2 diabetic rats.
Xiao-Ye WU ; Wen-Yan WANG ; Rong-Rong WANG ; Lin XIE ; Zhou-Xi FANG ; Guo-Rong CHEN
National Journal of Andrology 2008;14(4):371-376
OBJECTIVETo investigate the effects of Ginkgo biloba extract (EGB) on the testosterone synthesis in the Leydig cells of type 2 diabetic rats.
METHODSThirty male SD rats were equally randomised into a normal control, a type 2 diabetic and an EGB group. Morphological changes of Leydig cells were observed by light microscopy (LM) and transmission electron microscopy (TEM), concentrations of serum luteinizing hormone (LH) and testosterone (T) were determined by enzyme linked immunosorbent assay (ELISA), and the mRNA levels in the steroidogenic acute regulatory protein (StAR), cytochrome P450 side chain cleavage (P450scc), cytochrome P450 17a-hydroxylase (P450c17), 17beta-hydroxysteroid dehydrogenase 3 (17beta-HSD3) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD1) from the Leydig cells were examined by RT-PCR.
RESULTSCompared with the normal control, there was a significant decrease in the number and volume of Leydig cells, the levels of serum LH and T and the expression of mRNA in StAR, P450scc, 17beta-HSD3 and 3beta-HSD1 in the type 2 diabetes group. And the expression of the P450c17 gene showed a tendency of descending, but with no significance. Compared with the type 2 diabetes group, 12 weeks of EGB treatment caused very slight pathological changes in the Leydig cells, significantly increased the concentrations of blood LH and T, markedly elevated the levels of mRNA in StAR and P450scc and induced an ascending tendency of the expressions of P450c17, 17beta-HSD3 and 3beta-HSD1.
CONCLUSIONEGB enhances testosterone synthesis and secretion of Leydig cells by reducing the impairment of the testis in type 2 diabetic rats.
17-Hydroxysteroid Dehydrogenases ; genetics ; Animals ; Cholesterol Side-Chain Cleavage Enzyme ; genetics ; Diabetes Mellitus, Type 2 ; blood ; genetics ; physiopathology ; Enzyme-Linked Immunosorbent Assay ; Gene Expression ; drug effects ; Ginkgo biloba ; chemistry ; Hydroxysteroid Dehydrogenases ; genetics ; Leydig Cells ; drug effects ; metabolism ; ultrastructure ; Luteinizing Hormone ; blood ; Male ; Microscopy, Electron, Transmission ; Phosphoproteins ; genetics ; Plant Extracts ; pharmacology ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; Reverse Transcriptase Polymerase Chain Reaction ; Testosterone ; biosynthesis ; blood
10.Study on inhibitory effect of medicated serum of SLW on estrogen production by human endometrial cells of endometriosis.
Ao LI ; Xiao-Yu XU ; Hui WANG ; Gang CHEN
China Journal of Chinese Materia Medica 2008;33(6):686-690
OBJECTIVETo explore the mechanism of inhibitory effect of SLW on estrogen production by endometrial cells of endometriosis.
METHODAfter the model of eutopic primary cultured endometrial cells of endometiosis and hysteromyoma in vitro was successfully established, the changes of steroidgenic factor-1 (SF-1), chicken ovalbumin upstream-transcription factor (COUP-TF), 17-beta-hydroxysteroid dehydrogenase 1 (17-beta-HSD1) and 17-beta-hydroxysteroid dehydrogenase 2 (17-beta-HSD2) mRNA were detected by RT-PCR before and after treatment of medicated serum of SLW. The changes of SF-1 and COUP-TF protein were also observed by western blot synchronously according to the same treatment method mentioned-above. Meanwhile ,the data of hysteromyoma group was obtained from the above experiments.
RESULTThe expression of SF-1 mRNA and protein, 17-beta-HSD1 mRNA was weak, but COUP-TF mRNA and protein, 17-beta-HSD2 mRNA was remarkable in Hysteromyoma endometrium, as compared with those of endometiosis ,which was taken as control group (P<0.01). After the 48 hours' treatment of medicated serum of 5.0, 2.5 g kg(-1) d(-1) of SLW , the expression of COUP-TF mRNA and protein, 17beta-HSD2 mRNA was found significantly increased, but SF-1 mRNA and protein, 17-beta-HSD 1 mRNA was decreased in contrast to the control group (P <0.01 or P <0.05). Although the expresson of COUP-TF mRNA and protein was increased, SF-1 protein and 17-beta-HSD1 mRNA was decreased in 1.25 g kg(-1) d(-1) medicated serum group ,compared with those of the control group (P <0.01), the low dose group had no apparent inhibitory effect on the expression of SF-1, 17-beta-HSD2 mRNA.
CONCLUSIONThe medicated serum of SLW could inhibit the secretion of estradiol in eutopic endometrial cells of endometiosis, and its mechanism might be associated with combined action of inhibiting expression of SF-1, 17-beta-HSD1 and up-regulating expression of COUP-TF, 17-beta-HSD2.
17-Hydroxysteroid Dehydrogenases ; genetics ; Adult ; Animals ; COUP Transcription Factors ; genetics ; Drugs, Chinese Herbal ; pharmacology ; Endometriosis ; blood ; metabolism ; pathology ; Endometrium ; drug effects ; metabolism ; pathology ; Estradiol Dehydrogenases ; Estrogens ; biosynthesis ; Female ; Gene Expression Regulation ; drug effects ; Humans ; In Vitro Techniques ; Middle Aged ; RNA, Messenger ; genetics ; metabolism ; Rats ; Serum ; chemistry ; Steroidogenic Factor 1 ; genetics