1.Regulation of histone acetylation and apoptosis by trichostatin in HL-60 cells.
Xingang LI ; Weikai CHEN ; Junxia GU ; Guohui CUI ; Yan CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2004;24(6):572-574
In order to examine the strong anticancer action and low toxicity of Trichostatin A (TSA), the effect of TSA was examined on the growth inhibition, acetylation of histone H3 and apoptosis in HL-60 cells by employing MTT, immunocytochemical techniques, and Annexin-V-FITC/ PI assay. Our results showed that TSA could inhibit proliferation of HL- 60 cells in a time- and dose-dependent manner, and the IC50 at the 36th h was 100 ng/ml. The apoptosis-inducing effect of TSA on HL-60 cells was also time- and dose-dependent. But it didn't demonstrate apparent apoptosis induction in NPBMNCs within specific dose and time range. Both of the acetylation of histone H3 in HL-60 cells and NPBMNCs increased significantly (P<0.05) after treated with 100 ng/ml TSA for 4 h. However, there was no significant differences between the two groups (P>0.05). It is concluded that TSA can inhibit growth and induce apoptosis of HL-60 cells in a time- and dose-dependent manner, and is able to selectively induce apoptosis in HL-60 cells but does not respond in NPBMNCs under the same conditions. The difference of TSA between HL-60 cells and NPBMNCs can't be explained by the regulation of histone acetylation.
Acetylation
;
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
drug effects
;
HL-60 Cells
;
Histone Deacetylase Inhibitors
;
Histone Deacetylases
;
chemistry
;
Humans
;
Hydroxamic Acids
;
pharmacology
2.Regulation of histone acetylation and apoptosis by trichostatin in HL-60 cells.
Xingang, LI ; Weikai, CHEN ; Junxia, GU ; Guohui, CUI ; Yan, CHEN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2004;24(6):572-4
In order to examine the strong anticancer action and low toxicity of Trichostatin A (TSA), the effect of TSA was examined on the growth inhibition, acetylation of histone H3 and apoptosis in HL-60 cells by employing MTT, immunocytochemical techniques, and Annexin-V-FITC/ PI assay. Our results showed that TSA could inhibit proliferation of HL- 60 cells in a time- and dose-dependent manner, and the IC50 at the 36th h was 100 ng/ml. The apoptosis-inducing effect of TSA on HL-60 cells was also time- and dose-dependent. But it didn't demonstrate apparent apoptosis induction in NPBMNCs within specific dose and time range. Both of the acetylation of histone H3 in HL-60 cells and NPBMNCs increased significantly (P<0.05) after treated with 100 ng/ml TSA for 4 h. However, there was no significant differences between the two groups (P>0.05). It is concluded that TSA can inhibit growth and induce apoptosis of HL-60 cells in a time- and dose-dependent manner, and is able to selectively induce apoptosis in HL-60 cells but does not respond in NPBMNCs under the same conditions. The difference of TSA between HL-60 cells and NPBMNCs can't be explained by the regulation of histone acetylation.
Acetylation
;
Antineoplastic Agents/pharmacology
;
Apoptosis/*drug effects
;
HL-60 Cells
;
Histone Deacetylases/antagonists & inhibitors
;
Histone Deacetylases/*chemistry
;
Hydroxamic Acids/*pharmacology
3.Structure-activity relationships of histone deacetylase inhibitors.
Yu-Mei TAN ; Wen-Yuan HUANG ; Nie-Fang YU
Acta Pharmaceutica Sinica 2009;44(10):1072-1083
Among those enzymes that regulate gene expression, histone deacetylases (HDACs) play important roles in cell cycles. Extensive studies were carried out in the field of HDACs and the applications of HDAC inhibitors (HDACIs) as chemotherapeutic interventions for diverse diseases. HDACIs have moved from laboratories to clinic uses. Huge bodies of related research results were well documented and dispersed in literature. According to our understanding, HDACIs can be broadly classified as hydroxamic acids, cyclic tetrapeptides, short chain fatty acids, benzamides and electrophilic ketones. Herein, we are going to review the design and their structure-activity relationships of HDACIs and according to their structural catalogs.
Antineoplastic Agents
;
chemistry
;
pharmacology
;
Benzamides
;
chemistry
;
Fatty Acids
;
chemistry
;
Histone Acetyltransferases
;
metabolism
;
Histone Deacetylase Inhibitors
;
chemistry
;
pharmacology
;
Histone Deacetylases
;
metabolism
;
Humans
;
Hydroxamic Acids
;
chemistry
;
Molecular Structure
;
Peptides, Cyclic
;
chemistry
;
Structure-Activity Relationship
4.Innovative In Vitro Chemo-Hormonal Drug Therapy for Refractory Thyroid Carcinomas.
Tae Yon SUNG ; Sung Ho CHOI ; Jung Min LEE ; Jong Ju JEONG ; Sang Wook KANG ; Woong Youn CHUNG
Journal of Korean Medical Science 2012;27(7):729-735
More than 95% of the thyroid carcinomas are well differentiated types showing favorable prognosis. However, only a few therapeutic options are available to treat the patients with undifferentiated thyroid carcinomas, especially with refractory thyroid carcinomas that are not amenable to surgery or radioiodine ablation. We investigated the anticancer effects of 20 chemotherapy and hormonal therapy drugs on 8 thyroid carcinoma cell lines. In vitro chemosensitivity was tested using the adenosine-triphosphate-based chemotherapy response assay (ATP-CRA). The tumor inhibition rate (TIR; or cell death rate) or half maximal inhibitory concentration (IC50) was analyzed to interpret the results. Of the 12 chemotherapy drugs, etoposide (178.9 index value in follicular carcinoma cell line) and vincristine (211.7 in Hurthle cell carcinoma cell line) were the most active drugs showing the highest chemosensitivity, and of the 8 additional drugs, trichostatin A (0.03 microg/mL IC50 in follicular carcinoma cell line) showed favorable outcome having the anticancer effect. In our study, the result of etoposide and vincristine show evidence as active anticancer drugs in thyroid carcinoma cell lines and trichostatin A seems be the next promising drug. These drugs may become an innovative therapy for refractory thyroid carcinomas in near future.
Adenosine Triphosphate/chemistry/pharmacology/therapeutic use
;
Antineoplastic Agents/chemistry/*pharmacology/therapeutic use
;
Apoptosis/drug effects
;
Cell Line, Tumor
;
Etoposide/chemistry/pharmacology/therapeutic use
;
Humans
;
Hydroxamic Acids/chemistry/pharmacology/therapeutic use
;
Thyroid Neoplasms/drug therapy
;
Vincristine/chemistry/pharmacology/therapeutic use
5.A novel trichostatin analogue culture of Streptomyces sp. CPCC 203909.
Ming-hua CHEN ; Ye-xiang WU ; Yan-ni XU ; Li-yan YU ; Bin HONG ; Wei JIANG ; Shu-yi SI
China Journal of Chinese Materia Medica 2015;40(9):1751-1754
By using a cell-based high throughput screening model for the CLA-1 up-regulator, Streptomyces 203909 was found to produce up-regulator of CLA-1. A novel trichostatin analogue was isolated from the rice fermentation of Streptomyces sp. CPCC 203909by a combination of various chromatographic techniques including column chromatography (CC) over silica gel, flash C18 CC, and reversed-phase HPLC. Its structure was identified as (-)-(R,2E,4Z)-7-[(4'-dimethylamino) phenyl]-4,6-dimethyl-7-oxohepta-2,4-dienoyl-L-glutamine (1) by the spectroscopic and chemical methods, and combination with the CD spectroscopy and Marfey's method. In the prelimi- nary assays, Compound 1 showed cytotoxicity against human embryonic kidney 293 cell line with IC50 value 35.3 [µmol · L(-1).
Cell Survival
;
drug effects
;
Fermentation
;
Hep G2 Cells
;
Humans
;
Hydroxamic Acids
;
chemistry
;
isolation & purification
;
metabolism
;
pharmacology
;
Molecular Structure
;
Streptomyces
;
chemistry
;
metabolism
6.Design, synthesis, and biological activities of histone deacetylase inhibitors with diketo ester as zinc binding group.
Hui LU ; Hong SU ; Bo YANG ; Qi-Dong YOU
Acta Pharmaceutica Sinica 2011;46(3):293-298
Histone deacetylases (HDACs) inhibition causes hyperacetylation of histones leading to growth arrest, differentiation and apoptosis of tumor cells, representing a new strategy in cancer therapy. Many of previously reported HDACs inhibitors are hydroxamic acid derivatives, which could chelate the zinc ion in the active site in a bidentate fashion. However, hydroxamic acids occasionally have produced problems such as poor pharmacokinetics, severe toxicity and low selectivity. Herein we describe the identification of a new series of non-hydroxamate HDACs inhibitors bearing diketo ester moieties as zinc binding group. HDACs inhibition assay and antiproliferation assays in vitro against multiple cancer cell lines were used for evaluation. These compounds displayed low antiproliferative activity against solid tumor cells, while good antiproliferative activity against human leukemic monocyte lymphoma cell line U937. Compound CPUYS707 is the best with GI50 value of 0.31 micromol x L(-1) against U937 cells, which is more potent than SAHA and MS-275. HDACs inhibition activity of these compounds is lower than that expected, further evaluation is needed.
Antineoplastic Agents
;
chemical synthesis
;
chemistry
;
pharmacology
;
Benzamides
;
pharmacology
;
Biphenyl Compounds
;
chemical synthesis
;
chemistry
;
pharmacology
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Drug Design
;
Esters
;
chemistry
;
Histone Deacetylase Inhibitors
;
chemical synthesis
;
chemistry
;
pharmacology
;
Histone Deacetylases
;
metabolism
;
Humans
;
Hydroxamic Acids
;
pharmacology
;
Molecular Structure
;
Pyridines
;
pharmacology
;
U937 Cells
;
drug effects
;
Zinc
;
chemistry
7.A new target of cancer therapy: advances in the study of histone deacetylase.
Ai-Lin LIU ; Juan LONG ; Nan WANG ; Guan-Hua DU
Acta Pharmaceutica Sinica 2005;40(7):585-590
Acetylation
;
Animals
;
Apoptosis
;
drug effects
;
Benzamides
;
pharmacology
;
Drug Delivery Systems
;
Enzyme Inhibitors
;
pharmacology
;
Histone Acetyltransferases
;
drug effects
;
metabolism
;
Histone Deacetylase Inhibitors
;
Histone Deacetylases
;
chemistry
;
physiology
;
Histones
;
drug effects
;
metabolism
;
Humans
;
Hydroxamic Acids
;
pharmacology
;
Neoplasms
;
pathology
;
Peptides
;
pharmacology
;
Pyridines
;
pharmacology
;
Valproic Acid
;
pharmacology
8.Histone deacetylase inhibitor KBH-A42 inhibits cytokine production in RAW 264.7 macrophage cells and in vivo endotoxemia model.
Yongseok CHOI ; Song Kyu PARK ; Hwan Mook KIM ; Jong Soon KANG ; Yeo Dae YOON ; Sang Bae HAN ; Jeung Whan HAN ; Jee Sun YANG ; Gyoonhee HAN
Experimental & Molecular Medicine 2008;40(5):574-581
In light of the anti-inflammatory properties of histone deacetylase (HDAC) inhibitors, such as suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), we examined a new HDAC inhibitor KBH-A42 for its anti-inflammatory activities. KBH-A42 showed noteworthy anti-inflammatory properties in vitro via suppression of the production of TNF-alpha, a proinflammatory cytokine, and nitric oxide (NO), a proinflammatory effector molecule, in LPS-stimulated RAW264.7 cells and peritoneal macrophages. It also inhibited TNF-alpha production in vivo as demonstrated in a LPS-induced mouse endotoxemia model. The levels of TNF-alpha, IL-1beta, IL-6 and iNOS mRNAs determined by RT-PCR propose that the inhibition of these pro-inflammatory mediators by KBH-A42 resulted from inhibiting expression of these genes. However, the EMSA study to see the effect of KBH-A42 on the binding of NF-kappaB, a transcription factor, to a specific DNA sequence showed that the binding of NF-kappaB to DNA was not changed regardless of increasing the concentration of KBH-A42 in the presence and absence of LPS stimulation. Interestingly, DNA binding of another transcription factor AP-1 dose-dependently increased by KBH-A42. KBH-A42 differentially regulated the phosphorylation of MAP kinases. While the phosphprylation of ERK1/2 and SAPK/JNK was not affected by KBH-A42, the phosphorylation of p38 decreased by KBH-A42. These results showed that KBH-A42 inhibits production of proinflammatory cytokines in macrophages by decreasing their mRNA levels, and p38 kinase is involved in the KBH-A42-mediated inhibition.
Animals
;
Blotting, Western
;
Cell Line
;
Cell Survival/drug effects
;
Cytokines/blood/genetics/*metabolism
;
Electrophoretic Mobility Shift Assay
;
Endotoxemia/blood/metabolism/pathology
;
Enzyme Inhibitors/chemistry/*pharmacology
;
Histone Deacetylases/*antagonists & inhibitors
;
Hydroxamic Acids/chemistry/*pharmacology
;
Interleukin-1beta/genetics/metabolism
;
Interleukin-6/genetics/metabolism
;
Macrophages/cytology/*drug effects/metabolism
;
Mice
;
Mitogen-Activated Protein Kinase 1/metabolism
;
Mitogen-Activated Protein Kinase 3/metabolism
;
Mitogen-Activated Protein Kinases/metabolism
;
Molecular Structure
;
NF-kappa B/metabolism
;
Nitric Oxide/metabolism
;
Nitric Oxide Synthase Type II/genetics/metabolism
;
Phosphorylation/drug effects
;
Piperidones/chemistry/*pharmacology
;
Protein Binding/drug effects
;
Reverse Transcriptase Polymerase Chain Reaction
;
Transcription Factor AP-1/metabolism
;
Tumor Necrosis Factor-alpha/blood/genetics/metabolism