1.A pedigree affected with Huntington disease.
Chinese Journal of Medical Genetics 2015;32(5):751-752
2.Huntington Disease in Asia.
Miao XU ; Zhi-Ying WU ;
Chinese Medical Journal 2015;128(13):1815-1819
OBJECTIVEThe objective was to review the major differences of Huntington disease (HD) in Asian population from those in the Caucasian population.
DATA SOURCESData cited in this review were obtained from PubMed database and China National Knowledge Infrastructure (CNKI) from 1994 to 2014. All the papers were written in English or Chinese languages, with the terms of Asia/Asian, HD, genotype, epidemiology, phenotype, and treatment used for the literature search.
STUDY SELECTIONFrom the PubMed database, we included the articles and reviews which contained the HD patients' data from Asian countries. From the CNKI, we excluded the papers which were not original research. Due to the language's restrictions, those data published in other languages were not included.
RESULTSIn total, 50 papers were cited in this review, authors of which were from the mainland of China, Japan, India, Thailand, Taiwan (China), Korea, and western countries.
CONCLUSIONSThe lower epidemiology in Asians can be partly explained by the less cytosine-adenine-guanine repeats, different haplotypes, and CCG polymorphisms. For the physicians, atypical clinical profiles such as the initial symptom of ataxia, movement abnormalities of Parkinsonism, dystonia, or tics need to be paid more attention to and suggest gene testing if necessary. Moreover, some pathogenesis studies may help progress some new advanced treatments. The clinicians in Asian especially in China should promote the usage of genetic testing and put more effects in rehabilitation, palliative care, and offer comfort of patients and their families. The unified HD rating scale also needs to be popularized in Asia to assist in evaluating the progression of HD.
Asia ; epidemiology ; Genotype ; Haplotypes ; genetics ; Humans ; Huntington Disease ; epidemiology ; genetics ; Phenotype
3.Genetic testing and prenatal diagnosis of two pedigrees affected with Huntington disease.
Yilin REN ; Peng DAI ; Chen CHEN ; Huikun DUAN ; Xiangdong KONG
Chinese Journal of Medical Genetics 2021;38(5):446-449
OBJECTIVE:
To explore the genetic basis for two Chinese pedigrees affected with Huntington disease and provide prenatal diagnosis for them.
METHODS:
Peripheral venous blood samples were collected from the probands. PCR and capillary gel electrophoresis were used to determine the number of CAG repeats in their IT15 gene. Pre-symptomatic testing was offered to their children and relatives, and prenatal diagnosis was provided to three pregnant women from the two pedigrees.
RESULTS:
The two probands, in addition with three asymptomatic members, were found to have a (CAG)n repeat number greater than 40. Upon prenatal diagnosis, the numbers of CAG repeats in two fetuses from pedigree 1 were determined as (16, 19) and (18, 19), both were within the normal range. A fetus from pedigree 2 was found to have a CAG repeat number of (15, 41), which exceeded the normal range.
CONCLUSION
Genetic testing can facilitate the diagnosis of Huntington disease and avoid further birth of affected children.
Child
;
Female
;
Genetic Testing
;
Humans
;
Huntington Disease/genetics*
;
Nerve Tissue Proteins/genetics*
;
Pedigree
;
Pregnancy
;
Prenatal Diagnosis
4.CRISPR-Based Genome-Editing Tools for Huntington's Disease Research and Therapy.
Yiyang QIN ; Shihua LI ; Xiao-Jiang LI ; Su YANG
Neuroscience Bulletin 2022;38(11):1397-1408
Huntington's disease (HD) is an autosomal dominantly-inherited neurodegenerative disease, which is caused by CAG trinucleotide expansion in exon 1 of the Huntingtin (HTT) gene. Although HD is a rare disease, its monogenic nature makes it an ideal model in which to understand pathogenic mechanisms and to develop therapeutic strategies for neurodegenerative diseases. Clustered regularly-interspaced short palindromic repeats (CRISPR) is the latest technology for genome editing. Being simple to use and highly efficient, CRISPR-based genome-editing tools are rapidly gaining popularity in biomedical research and opening up new avenues for disease treatment. Here, we review the development of CRISPR-based genome-editing tools and their applications in HD research to offer a translational perspective on advancing the genome-editing technology to HD treatment.
Humans
;
Gene Editing
;
Huntington Disease/therapy*
;
CRISPR-Cas Systems/genetics*
;
Neurodegenerative Diseases
6.Advance in research on spinocerebellar ataxia 17.
Chinese Journal of Medical Genetics 2014;31(1):44-47
Hereditary spinocerebellar ataxia type 17 (SCA17) is an autosomal dominantly inherited progressive degenerative disease of the nervous system. Also known as Huntington's disease-like 4(HDL4), SCA17 mainly features ataxia, muscle dystonia and psychiatric symptoms. The gene predisposing to SCA17 has been mapped and cloned, which encodes a TATA-binding protein (TBP). A CAG repeat expansion in the coding region of TBP gene can cause polyglutamine chain extension in the protein. This paper reviews recent progress in the research on SCA17 in regard to its clinical, etiology, pathology and pathogenesis.
Animals
;
Humans
;
Huntington Disease
;
genetics
;
pathology
;
Spinocerebellar Ataxias
;
genetics
;
pathology
;
TATA-Box Binding Protein
;
genetics
;
Trinucleotide Repeat Expansion
7.Westphal variant Huntington's disease in a case.
Mei HOU ; Dian-rong SUN ; Rong YU
Chinese Journal of Pediatrics 2012;50(12):953-954
8.The advances in research on phosphorylation of polyglutamine disease.
Ya-fang ZHOU ; Hong JIANG ; Jian-guang TANG ; Bei-sha TANG
Chinese Journal of Medical Genetics 2008;25(4):414-417
Polyglutamine (polyQ) diseases are a group of hereditary neurodegenerative disorders caused by expansion of a glutamine repeat in responsible gene products. To date, the pathogenesis of polyQ diseases is still not very clear, but many researches suggest that phosphorylation of mutant proteins plays a critical role on the process of Huntington's disease, dentatorubral-pallidoluysian atrophy, spinal bulbar muscular atrophy, spinocerebellar ataxia1 and spinocerebellar ataxia 3/Machado-Joseph disease.
Heredodegenerative Disorders, Nervous System
;
genetics
;
metabolism
;
Humans
;
Huntington Disease
;
genetics
;
metabolism
;
Machado-Joseph Disease
;
genetics
;
metabolism
;
Muscular Atrophy, Spinal
;
Peptides
;
genetics
;
metabolism
;
Phosphorylation
;
physiology
;
Spinocerebellar Degenerations
;
genetics
;
metabolism
;
Trinucleotide Repeat Expansion
;
genetics
;
physiology
;
Trinucleotide Repeats
;
genetics
9.Histone deacetylase inhibitors as therapeutic agents for polyglutamine disorders.
Hong JIANG ; Dandan JIA ; Beisha TANG
Chinese Journal of Medical Genetics 2010;27(1):52-55
During the past few years, gene expression studies have shown that the perturbation of transcription frequently results in neuronal dysfunction in polyglutamine (PolyQ) diseases such as Huntington's disease (HD). Histone deacetylases (HDACs) act as repressors of transcription through interaction with co-repressor complexes, leading to chromatin remodelling. Aberrant interaction between PolyQ proteins and regulators of transcription could be one mechanism by which transcriptional dysregulation occurs. Here, the authors discuss the possible mechanism of transcriptional dysfunction in PolyQ disease, including the effect of histone acetyltransferases (HATs) and HDACs on pathogenesis, and the potential therapeutic pathways through which histone deacetylase inhibitors (HDACIs) might act to correct the aberrant transcription observed in HD and other PolyQ diseases.
Animals
;
Histone Acetyltransferases
;
genetics
;
metabolism
;
Histone Deacetylase Inhibitors
;
therapeutic use
;
Histone Deacetylases
;
genetics
;
metabolism
;
Humans
;
Huntington Disease
;
drug therapy
;
enzymology
;
metabolism
;
Peptides
;
metabolism
10.Clinical characteristics and genetic mutation analysis in a Hui family with Huntington disease.
Jing CHEN ; Jing LEI ; Xiao-ning ZHANG
Chinese Journal of Medical Genetics 2011;28(5):493-495
OBJECTIVETo perform clinical analysis and gene diagnosis of Huntington disease (HD) in a Hui pedigree from Xinjiang.
METHODSThe IT15 gene mutation of the Hui family was analyzed by touchdown PCR, molecular cloning and gene sequencing.
RESULTSThe proband carried 46 CAG repeats. Pain in bilateral lower limb was the first symptom, followed by symptoms such as dance like involuntary movements, mood disorders, impaired memory and intelligence. Asymptomatic son of the proband carried 44 CAG repeats.
CONCLUSIONThis family showed reduced CAG trinucleotide repeats of IT15 gene during maternal transmission. A CAA variation is also detected within the CAG repeat region.
Adult ; Alleles ; Asian Continental Ancestry Group ; genetics ; Base Sequence ; China ; Female ; Gene Frequency ; genetics ; Humans ; Huntingtin Protein ; Huntington Disease ; genetics ; Male ; Molecular Sequence Data ; Mutation ; genetics ; Nerve Tissue Proteins ; genetics ; Nuclear Proteins ; genetics ; Pedigree ; Phenotype ; Trinucleotide Repeats ; genetics