1.Early Administration of Nelonemdaz May Improve the Stroke Outcomes in Patients With Acute Stroke
Jin Soo LEE ; Ji Sung LEE ; Seong Hwan AHN ; Hyun Goo KANG ; Tae-Jin SONG ; Dong-Ick SHIN ; Hee-Joon BAE ; Chang Hun KIM ; Sung Hyuk HEO ; Jae-Kwan CHA ; Yeong Bae LEE ; Eung Gyu KIM ; Man Seok PARK ; Hee-Kwon PARK ; Jinkwon KIM ; Sungwook YU ; Heejung MO ; Sung Il SOHN ; Jee Hyun KWON ; Jae Guk KIM ; Young Seo KIM ; Jay Chol CHOI ; Yang-Ha HWANG ; Keun Hwa JUNG ; Soo-Kyoung KIM ; Woo Keun SEO ; Jung Hwa SEO ; Joonsang YOO ; Jun Young CHANG ; Mooseok PARK ; Kyu Sun YUM ; Chun San AN ; Byoung Joo GWAG ; Dennis W. CHOI ; Ji Man HONG ; Sun U. KWON ;
Journal of Stroke 2025;27(2):279-283
2.Effect of regional COVID-19 outbreak to emergency department response on acute myocardial infarction: a multicenter retrospective study
Young Wook KIM ; Sungbae MOON ; Hyun Wook RYOO ; Jae Yun AHN ; Jung Bae PARK ; Dong Eun LEE ; Sang Hun LEE ; Sangchan JIN ; You Ho MUN ; Jung Ho KIM ; Tae Chang JANG
Journal of the Korean Society of Emergency Medicine 2025;36(2):72-82
Objective:
The Daegu region experienced the first wave of the pandemic at the beginning of the coronavirus disease 2019 (COVID-19) outbreak in Korea. Other non-COVID-19-related treatments during a community outbreak, such as cardiovascular diseases, were expected to impact emergency departments. In acute myocardial infarctions, time is an important factor affecting the patient outcome. This study examined how community COVID-19 outbreak affected STsegment elevated myocardial infarction (STEMI) care in emergency departments.
Methods:
A retrospective analysis was performed on patients visiting five emergency departments in the Daegu area who were diagnosed with STEMI from February 18 to April 17 each year from 2018 to 2020. The demographic characteristics, prehospital variables, in-hospital time variables, and treatment results were collected. The cases were divided into the pre-COVID period and the COVID period for comparison.
Results:
The study included 254 patients (194 pre-COVID, 60 during COVID). The symptom-to-door time did not differ. Although the door-to-first doctor time was shortened (4 min vs. 2 min, P=0.01), the rate of coronary angiogram along with the door-to-angiogram time and the door-to-balloon time did not change. The length of stay in the emergency department was delayed during COVID-19 (median, 136 min vs. 404 min; P<0.01). The in-hospital length of stay and mortality were similar in both groups.
Conclusion
The time to treat STEMI was not delayed significantly during the first wave of the COVID-19 outbreak in the Daegu area compared with the pre-pandemic period. Mortality did not change. The length of stay was elongated significantly in the emergency department but not in the hospital.
3.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
4.Korean Guidelines for Diagnosis and Management of Interstitial Lung Diseases: Connective Tissue Disease Associated Interstitial Lung Disease
Ju Hyun OH ; Jae Ha LEE ; Sung Jun CHUNG ; Young Seok LEE ; Tae-Hyeong KIM ; Tae-Jung KIM ; Joo Hun PARK ;
Tuberculosis and Respiratory Diseases 2025;88(2):247-263
Connective tissue disease (CTD), comprising a range of autoimmune disorders, is often accompanied by lung involvement, which can lead to life-threatening complications. The primary types of CTDs that manifest as interstitial lung disease (ILD) include rheumatoid arthritis, systemic sclerosis, Sjögren’s syndrome, mixed CTD, idiopathic inflammatory myopathies, and systemic lupus erythematosus. CTD-ILD presents a significant challenge in clinical diagnosis and management due to its heterogeneous nature and variable prognosis. Early diagnosis through clinical, serological, and radiographic assessments is crucial for distinguishing CTD-ILD from idiopathic forms and for implementing appropriate therapeutic strategies. Hence, we have reviewed the multiple clinical manifestations and diagnostic approaches for each type of CTD-ILD, acknowledging the diversity and complexity of the disease. The importance of a multidisciplinary approach in optimizing the management of CTD-ILD is emphasized by recent therapeutic advancements, which include immunosuppressive agents, antifibrotic therapies, and newer biological agents targeting specific pathways involved in the pathogenesis. Therapeutic strategies should be customized according to the type of CTD, the extent of lung involvement, and the presence of extrapulmonary manifestations. Additionally, we aimed to provide clinical guidance, including therapeutic recommendations, for the effective management of CTD-ILD, based on patient, intervention, comparison, outcome (PICO) analysis.
5.Pericapsular Nerve Group Block with Periarticular Injection for Pain Management after Total Hip Arthroplasty: A Randomized Controlled Trial
Hun Sik CHO ; Bo Ra LEE ; Hyuck Min KWON ; Jun Young PARK ; Hyeong Won HAM ; Woo-Suk LEE ; Kwan Kyu PARK ; Tae Sung LEE ; Yong Seon CHOI
Yonsei Medical Journal 2025;66(4):233-239
Purpose:
The purpose of this study was to compare the effectiveness of pericapsular nerve group (PENG) block with periarticular multimodal drug injection (PMDI) on postoperative pain management and surgical outcomes in patients who underwent total hip arthroplasty (THA). We hypothesized that PENG block with PMDI would exhibit superior effects on postoperative pain control after THA compared to PMDI alone.
Materials and Methods:
From April 2022 to February 2023, 58 patients who underwent THA were randomly assigned into two groups: PENG block with PMDI group (n=29) and PMDI-only group (n=29). Primary outcomes were postoperative numeric rating scale (NRS) at rest and during activity at 6, 24, and 48 hours postoperatively. Secondary outcomes were postoperative complications (nausea and vomiting), Richards-Campbell Sleep Questionnaire (RCSQ) score, length of hospital stay, Western Ontario and McMaster Universities Osteoarthritis (WOMAC) index, Harris Hip Score (HHS), and total morphine usage after surgery.
Results:
There was no significant difference in postoperative pain for either resting NRS or active NRS. Postoperative nausea and vomiting, RCSQ score, length of hospital stay, WOMAC index, HHS, and total morphine usage exhibited no significant differences between the two groups.
Conclusion
Both groups showed no significant differences in postoperative pain and clinical outcomes, indicating that the addition of PENG block to PMDI does not improve pain management after applying the posterolateral approach of THA. PMDI alone during THA would be an efficient, fast, and safe method for managing postoperative pain. This article was registered with ClinicalTrials.gov (Gov ID: NCT05320913).
6.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
7.Korean Guidelines for Diagnosis and Management of Interstitial Lung Diseases: Connective Tissue Disease Associated Interstitial Lung Disease
Ju Hyun OH ; Jae Ha LEE ; Sung Jun CHUNG ; Young Seok LEE ; Tae-Hyeong KIM ; Tae-Jung KIM ; Joo Hun PARK ;
Tuberculosis and Respiratory Diseases 2025;88(2):247-263
Connective tissue disease (CTD), comprising a range of autoimmune disorders, is often accompanied by lung involvement, which can lead to life-threatening complications. The primary types of CTDs that manifest as interstitial lung disease (ILD) include rheumatoid arthritis, systemic sclerosis, Sjögren’s syndrome, mixed CTD, idiopathic inflammatory myopathies, and systemic lupus erythematosus. CTD-ILD presents a significant challenge in clinical diagnosis and management due to its heterogeneous nature and variable prognosis. Early diagnosis through clinical, serological, and radiographic assessments is crucial for distinguishing CTD-ILD from idiopathic forms and for implementing appropriate therapeutic strategies. Hence, we have reviewed the multiple clinical manifestations and diagnostic approaches for each type of CTD-ILD, acknowledging the diversity and complexity of the disease. The importance of a multidisciplinary approach in optimizing the management of CTD-ILD is emphasized by recent therapeutic advancements, which include immunosuppressive agents, antifibrotic therapies, and newer biological agents targeting specific pathways involved in the pathogenesis. Therapeutic strategies should be customized according to the type of CTD, the extent of lung involvement, and the presence of extrapulmonary manifestations. Additionally, we aimed to provide clinical guidance, including therapeutic recommendations, for the effective management of CTD-ILD, based on patient, intervention, comparison, outcome (PICO) analysis.
8.Pericapsular Nerve Group Block with Periarticular Injection for Pain Management after Total Hip Arthroplasty: A Randomized Controlled Trial
Hun Sik CHO ; Bo Ra LEE ; Hyuck Min KWON ; Jun Young PARK ; Hyeong Won HAM ; Woo-Suk LEE ; Kwan Kyu PARK ; Tae Sung LEE ; Yong Seon CHOI
Yonsei Medical Journal 2025;66(4):233-239
Purpose:
The purpose of this study was to compare the effectiveness of pericapsular nerve group (PENG) block with periarticular multimodal drug injection (PMDI) on postoperative pain management and surgical outcomes in patients who underwent total hip arthroplasty (THA). We hypothesized that PENG block with PMDI would exhibit superior effects on postoperative pain control after THA compared to PMDI alone.
Materials and Methods:
From April 2022 to February 2023, 58 patients who underwent THA were randomly assigned into two groups: PENG block with PMDI group (n=29) and PMDI-only group (n=29). Primary outcomes were postoperative numeric rating scale (NRS) at rest and during activity at 6, 24, and 48 hours postoperatively. Secondary outcomes were postoperative complications (nausea and vomiting), Richards-Campbell Sleep Questionnaire (RCSQ) score, length of hospital stay, Western Ontario and McMaster Universities Osteoarthritis (WOMAC) index, Harris Hip Score (HHS), and total morphine usage after surgery.
Results:
There was no significant difference in postoperative pain for either resting NRS or active NRS. Postoperative nausea and vomiting, RCSQ score, length of hospital stay, WOMAC index, HHS, and total morphine usage exhibited no significant differences between the two groups.
Conclusion
Both groups showed no significant differences in postoperative pain and clinical outcomes, indicating that the addition of PENG block to PMDI does not improve pain management after applying the posterolateral approach of THA. PMDI alone during THA would be an efficient, fast, and safe method for managing postoperative pain. This article was registered with ClinicalTrials.gov (Gov ID: NCT05320913).
9.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
10.Korean Guidelines for Diagnosis and Management of Interstitial Lung Diseases: Connective Tissue Disease Associated Interstitial Lung Disease
Ju Hyun OH ; Jae Ha LEE ; Sung Jun CHUNG ; Young Seok LEE ; Tae-Hyeong KIM ; Tae-Jung KIM ; Joo Hun PARK ;
Tuberculosis and Respiratory Diseases 2025;88(2):247-263
Connective tissue disease (CTD), comprising a range of autoimmune disorders, is often accompanied by lung involvement, which can lead to life-threatening complications. The primary types of CTDs that manifest as interstitial lung disease (ILD) include rheumatoid arthritis, systemic sclerosis, Sjögren’s syndrome, mixed CTD, idiopathic inflammatory myopathies, and systemic lupus erythematosus. CTD-ILD presents a significant challenge in clinical diagnosis and management due to its heterogeneous nature and variable prognosis. Early diagnosis through clinical, serological, and radiographic assessments is crucial for distinguishing CTD-ILD from idiopathic forms and for implementing appropriate therapeutic strategies. Hence, we have reviewed the multiple clinical manifestations and diagnostic approaches for each type of CTD-ILD, acknowledging the diversity and complexity of the disease. The importance of a multidisciplinary approach in optimizing the management of CTD-ILD is emphasized by recent therapeutic advancements, which include immunosuppressive agents, antifibrotic therapies, and newer biological agents targeting specific pathways involved in the pathogenesis. Therapeutic strategies should be customized according to the type of CTD, the extent of lung involvement, and the presence of extrapulmonary manifestations. Additionally, we aimed to provide clinical guidance, including therapeutic recommendations, for the effective management of CTD-ILD, based on patient, intervention, comparison, outcome (PICO) analysis.

Result Analysis
Print
Save
E-mail