1.Correlation between patient health questionnaire-2 and postoperative pain in laparoscopic cholecystectomy
Yusom SHIN ; Tae Woo PARK ; Huiyoung KIM ; Dong-jin SHIM ; Hochul LEE ; Joo-Duck KIM ; Donghee KANG
Anesthesia and Pain Medicine 2020;15(2):241-246
Background:
Postoperative pain is affected by preoperative depression. If the risk of postoperative pain associated with depression can be predicted preoperatively, anesthesiologists and/or surgeons can better manage it with personalized care. The objective of this study was to determine the efficacy of Patient Health Questionnaire-2 (PHQ-2) depression screening tool as a predictor of postoperative pain.
Methods:
A total of 50 patients scheduled for elective laparoscopic cholecystectomy with an American Society of Anesthesiologists grade of 1 or 2 were enrolled. They answered the PHQ-2, which consists of two questions, under the supervision of a researcher on the day before the surgery. The numerical rating scale (NRS) scores were assessed at post-anesthesia care unit (PACU), at 24, and 48 postoperative hours, and the amount of intravenous patient-controlled analgesia (IV-PCA) administered was documented at 24, 48, and 72 postoperative hours. At 72 h, the IV-PCA device was removed and the final dosage was recorded.
Results:
The NRS score in PACU was not significantly associated with the PHQ-2 score (correlation coefficients: 0.13 [P = 0.367]). However, the use of analgesics after surgery was higher in patients with PHQ-2 score of 3 or more (correlation coefficients: 0.33 [P = 0.018]).
Conclusions
We observed a correlation between the PHQ-2 score and postoperative pain. Therefore, PHQ-2 could be useful as a screening test for preoperative depression. Particularly, when 3 points were used as the cut-off score, the PHQ-2 score was associated with the dosage of analgesics, and the analgesic demand could be expected to be high with higher PHQ-2 scores.
2.The correlation of heart rate between natural sleep and dexmedetomidine sedation
Donghee KANG ; Changwoo LIM ; Dong jin SHIM ; Huiyoung KIM ; Ji wook KIM ; Hyung joo CHUNG ; Yusom SHIN ; Joo Duck KIM ; Sie Jeong RYU
Korean Journal of Anesthesiology 2019;72(2):164-168
BACKGROUND: Sedation by dexmedetomidine, like natural sleep, often causes bradycardia. We explored the nature of heart rate (HR) changes as they occur during natural sleep versus those occurring during dexmedetomidine sedation. METHODS: The present study included 30 patients who were scheduled to undergo elective surgery with spinal anesthesia. To assess HR and sedation, a pulse oximeter and bispectral index (BIS) monitor were attached to the patient in the ward and the operating room. After measuring HR and BIS at baseline, as the patients slept and once their BIS was below 70, HR and BIS were measured at 5-minute intervals during sleep. Baseline HR and BIS were also recorded before spinal anesthesia measured at 5-minute intervals after dexmedetomidine injection. RESULTS: During natural sleep, HR changes ranged from 2 to 19 beats/min (13.4 ± 4.4 beats/min), while in dexmedetomidine sedation, HR ranged from 9 to 40 beats/min (25.4 ± 8.5 beats/min). Decrease in HR was significantly correlated between natural sleep and dexmedetomidine sedation (R2 = 0.41, P < 0.001). The lowest HR was reached in 66 min during natural sleep (59 beats/min) and in 13 min with dexmedetomidine sedation (55 beats/min). The time to reach minimum HR was significantly different (P < 0.001), but there was no difference in the lowest HR obtained (P = 0.09). CONCLUSIONS: There was a correlation between the change in HR during natural sleep and dexmedetomidine sedation. The bradycardia that occurs when using dexmedetomidine may be a normal physiologic change, that can be monitored rather than corrected.
Anesthesia, Spinal
;
Bradycardia
;
Dexmedetomidine
;
Heart Rate
;
Heart
;
Humans
;
Hypnotics and Sedatives
;
Operating Rooms
3.The correlation of heart rate between natural sleep and dexmedetomidine sedation
Donghee KANG ; Changwoo LIM ; Dong jin SHIM ; Huiyoung KIM ; Ji wook KIM ; Hyung joo CHUNG ; Yusom SHIN ; Joo Duck KIM ; Sie Jeong RYU
Korean Journal of Anesthesiology 2019;72(2):164-168
BACKGROUND:
Sedation by dexmedetomidine, like natural sleep, often causes bradycardia. We explored the nature of heart rate (HR) changes as they occur during natural sleep versus those occurring during dexmedetomidine sedation.
METHODS:
The present study included 30 patients who were scheduled to undergo elective surgery with spinal anesthesia. To assess HR and sedation, a pulse oximeter and bispectral index (BIS) monitor were attached to the patient in the ward and the operating room. After measuring HR and BIS at baseline, as the patients slept and once their BIS was below 70, HR and BIS were measured at 5-minute intervals during sleep. Baseline HR and BIS were also recorded before spinal anesthesia measured at 5-minute intervals after dexmedetomidine injection.
RESULTS:
During natural sleep, HR changes ranged from 2 to 19 beats/min (13.4 ± 4.4 beats/min), while in dexmedetomidine sedation, HR ranged from 9 to 40 beats/min (25.4 ± 8.5 beats/min). Decrease in HR was significantly correlated between natural sleep and dexmedetomidine sedation (R2 = 0.41, P < 0.001). The lowest HR was reached in 66 min during natural sleep (59 beats/min) and in 13 min with dexmedetomidine sedation (55 beats/min). The time to reach minimum HR was significantly different (P < 0.001), but there was no difference in the lowest HR obtained (P = 0.09).
CONCLUSIONS
There was a correlation between the change in HR during natural sleep and dexmedetomidine sedation. The bradycardia that occurs when using dexmedetomidine may be a normal physiologic change, that can be monitored rather than corrected.
4.β-Amyrin Ameliorates Alzheimer’s Disease-Like Aberrant Synaptic Plasticity in the Mouse Hippocampus
Hye Jin PARK ; Huiyoung KWON ; Ji Hye LEE ; Eunbi CHO ; Young Choon LEE ; Minho MOON ; Mira JUN ; Dong Hyun KIM ; Ji Wook JUNG
Biomolecules & Therapeutics 2020;28(1):74-82
Alzheimer’s disease (AD) is a progressive and most frequently diagnosed neurodegenerative disorder. However, there is still no drug preventing the progress of this disorder. β-Amyrin, an ingredient of the surface wax of tomato fruit and dandelion coffee, is previously reported to ameliorate memory impairment induced by cholinergic dysfunction. Therefore, we tested whether β-amyrin can prevent AD-like pathology. β-Amyrin blocked amyloid β (Aβ)-induced long-term potentiation (LTP) impairment in the hippocampal slices. Moreover, β-amyrin improved Aβ-induced suppression of phosphatidylinositol-3-kinase (PI3K)/Akt signaling.LY294002, a PI3K inhibitor, blocked the effect of β-amyrin on Aβ-induced LTP impairment. In in vivo experiments, we observed that β-amyrin ameliorated object recognition memory deficit in Aβ-injected AD mice model. Moreover, neurogenesis impairments induced by Aβ was improved by β-amyrin treatment. Taken together, β-amyrin might be a good candidate of treatment or supplement for AD patients.
5.Spinosin Attenuates Alzheimer’s Disease-Associated Synaptic Dysfunction via Regulation of Plasmin Activity
Mudan CAI ; Inho JUNG ; Huiyoung KWON ; Eunbi CHO ; Jieun JEON ; Jeanho YUN ; Young Choon LEE ; Dong Hyun KIM ; Jong Hoon RYU
Biomolecules & Therapeutics 2020;28(2):131-136
Hippocampal synaptic dysfunction is a hallmark of Alzheimer’s disease (AD). Many agents regulating hippocampal synaptic plasticity show an ameliorative effect on AD pathology, making them potential candidates for AD therapy. In the present study, we investigated spinosin as a regulating agent of synaptic plasticity in AD. Spinosin attenuated amyloid β (Aβ)-induced long-term potentiation (LTP) impairment, and improved plasmin activity and protein level in the hippocampi of 5XFAD mice, a transgenic AD mouse model. Moreover, the effect of spinosin on hippocampal LTP in 5XFAD mice was prevented by 6-aminocaproic acid, a plasmin inhibitor. These results suggest that spinosin improves synaptic function in the AD hippocampus by regulating plasmin activity.
6.Neuroprotective effect of the ethanol extract of Artemisia capillaris on transient forebrain ischemia in mice via nicotinic cholinergic receptor.
Huiyoung KWON ; Ji Wook JUNG ; Young Choon LEE ; Jong Hoon RYU ; Dong Hyun KIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):428-435
Artemisia capillaris Thunberg is a medicinal plant used as a traditional medicine in many cultures. It is an effective remedy for liver problems including hepatitis. Recent pharmacological reports have indicated that Artemisia species can exert various neurological effects. Previously, we reported a memory-enhancing effect of Artemisia species. However, the mechanisms underlying the neuroprotective effect of A. capillaris (AC) are still unknown. In the present study, we investigated the effect of an ethanol extract of AC on ischemic brain injury in a mouse model of transient forebrain ischemia. The mice were treated with AC for seven days, beginning one day before induction of transient forebrain ischemia. Behavioral deficits were investigated using the Y-maze. Nissl and Fluoro-jade B staining were used to indicate the site of injury. To determine the underlying mechanisms for the drug, we measured acetylcholinesterase activity. AC (200 mg·kg) treatment reduced transient forebrain ischemia-induced neuronal cell death in the hippocampal CA1 region. The AC-treated group also showed significant amelioration in the spontaneous alternation of the Y-maze test performance, compared to that in the untreated transient forebrain ischemia group. Moreover, AC treatment showed a concentration-dependent inhibitory effect on acetylcholinesterase activity in vitro. Finally, the effect of AC on forebrain ischemia was blocked by mecamylamine, a nonselective nicotinic acetylcholine receptor antagonist. Our results suggested that in a model of forebrain ischemia, AC protected against neuronal death through the activation of nicotinic acetylcholine receptors.
Acetylcholinesterase
;
metabolism
;
Animals
;
Artemisia
;
Cell Death
;
drug effects
;
Cholinergic Antagonists
;
pharmacology
;
Disease Models, Animal
;
Ethanol
;
chemistry
;
Hippocampus
;
pathology
;
physiopathology
;
Ischemic Attack, Transient
;
drug therapy
;
pathology
;
physiopathology
;
Male
;
Mecamylamine
;
pharmacology
;
Memory
;
drug effects
;
Mice
;
Mice, Inbred C57BL
;
Models, Neurological
;
Neuroprotective Agents
;
administration & dosage
;
pharmacology
;
Phytotherapy
;
Plant Components, Aerial
;
chemistry
;
Plant Extracts
;
administration & dosage
;
pharmacology
;
Receptors, Cholinergic
;
metabolism