1.Expression of Vascular Endothelial Growth Factor Receptor Kinase Inser Domain Containing Receptor in Human Cervical Carcinoma
Huiming DI ; Fenglian XU ; Dong WANG
Chinese Journal of Obstetrics and Gynecology 2000;0(11):-
Objective To observe the expression of vascular endothelial growth factor receptor (KDR)in human cervical carcinomas, to clarify the relationship between the expression and invasion, metastasis, prognostic value in human cervical carcinoma. Methods KDR was stained immunohistochemically in 80 cases of human cervical carcinoma. Results The expression of KDR in the endothelial cells of tumor vasculature is: the high KDR expression rate of clinical cancer stages ≤Ⅰb and Ⅱa~Ⅲa was 21 4% and 60 6% (P
2.An unexpected similarity between antibiotic-resistant NDM-1 and beta-lactamase II from Erythrobacter litoralis.
Beiwen ZHENG ; Shuguang TAN ; Jia GAO ; Huiming HAN ; Jun LIU ; Guangwen LU ; Di LIU ; Yong YI ; Baoli ZHU ; George F GAO
Protein & Cell 2011;2(3):250-258
NDM-1 (New Delhi metallo-beta-lactamase) gene encodes a metallo-beta-lactamase (MBL) with high carbapenemase activity, which makes the host bacterial strain easily dispatch the last-resort antibiotics known as carbapenems and cause global concern. Here we present the bioinformatics data showing an unexpected similarity between NDM-1 and beta-lactamase II from Erythrobacter litoralis, a marine microbial isolate. We have further expressed these two mature proteins in E. coli cells, both of which present as a monomer with a molecular mass of 25 kDa. Antimicrobial susceptibility assay reveals that they share similar substrate specificities and are sensitive to aztreonam and tigecycline. The conformational change accompanied with the zinc binding visualized by nuclear magnetic resonance, Zn(2+)-bound NDM-1, adopts at least some stable tertiary structure in contrast to the metal-free protein. Our work implies a close evolutionary relationship between antibiotic resistance genes in environmental reservoir and in the clinic, challenging the antimicrobial resistance monitoring.
Amino Acid Sequence
;
Anti-Bacterial Agents
;
pharmacology
;
Aztreonam
;
pharmacology
;
Cephalosporinase
;
chemistry
;
genetics
;
metabolism
;
Computational Biology
;
methods
;
Drug Resistance, Bacterial
;
genetics
;
Enzyme Stability
;
drug effects
;
Evolution, Molecular
;
Minocycline
;
analogs & derivatives
;
pharmacology
;
Molecular Sequence Data
;
Phylogeny
;
Protein Structure, Tertiary
;
drug effects
;
Sequence Homology, Nucleic Acid
;
Sphingomonadaceae
;
drug effects
;
enzymology
;
genetics
;
Tigecycline
;
Zinc
;
pharmacology
;
beta-Lactamases
;
chemistry
;
genetics
;
metabolism