1.Protective Effect of Taohong Siwutang on Cerebral Ischemia-reperfusion Injury Based on A1/A2 Phenotype Transformation of Astrocytes Mediated by JAK2/STAT3 Pathway
Huifang WANG ; Xinru CHEN ; Mengyuan CHEN ; Xian ZHOU ; Lan HAN ; Weidong CHEN ; Zhaojie JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):25-34
ObjectiveTo investigate whether the effect of Taohong Siwutang on cerebral ischemia-reperfusion (CIRI) injury in rats is related to the regulation of astrocyte polarization and explore the related mechanism. MethodsEighty-four male SD rats were randomly assigned to the following groups: A sham operation group, a model group, Taohong Siwutang treatment groups (low dose, medium dose, and high dose), ligustrazine phosphate tablet (LPT) group, and AG490 group. All groups, except for the sham operation group, underwent middle cerebral artery occlusion/reperfusion (MCAO/R) modeling and were treated for seven days. The neurological impairment was evaluated using the Longa score. The volume of cerebral infarction was assessed through 2,3,5-triphenyltetrazolium chloride (TTC) staining. Real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) and Western blot analyses were performed to analyze the mRNA and protein expression levels of cortical complement 3 (C3), S100 calcium-binding protein A10 (S100A10), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3). Additionally, protein expression levels of vascular endothelial growth factor-A (VEGF-A) were assessed, and the mRNA expression levels of inflammatory factors, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), were evaluated. Glial fibrillary acidic protein (GFAP) and C3, S100A10 and Co-localization was detected via immunofluorescence double staining. Lastly, VEGF expression levels were measured using enzyme-linked immunosorbent assay (ELISA). ResultsCompared with the sham operation group, the model group showed a significant increase in cerebral infarction volume and neurological impairment (P<0.01). C3 protein levels were elevated, while S100A10 levels were decreased. Pathway-related markers were significantly upregulated (P<0.05, P<0.01), and VEGF-A protein levels were significantly reduced (P<0.01). The mRNA expression of inflammatory factors was significantly upregulated (P<0.01). Co-localization analysis showed significantly increased GFAP and C3 fluorescence intensity (P<0.01) and greatly decreased GFAP and S100A10 fluorescence intensity (P<0.01). Additionally, VEGF content was significantly elevated (P<0.01). Compared with the model group, medium- and high-dose Taohong Siwutang and LPT groups exhibited a significant reduction in cerebral infarction volume and neurological impairment (P<0.01). Groups treated with low, medium, and high doses of Taohong Siwutang and LPT group exhibited a decrease in C3 protein expression levels and an increase in S100A10 expression levels (P<0.01). In the high-dose Taohong Siwutang and AG490 groups, both protein and mRNA expression of C3 and pathway-related markers were significantly downregulated (P<0.05, P<0.01), while S100A10 expression and VEGF-A protein levels were significantly increased (P<0.01). Additionally, the mRNA expression levels of inflammatory factors were significantly reduced (P<0.01). The co-localization fluorescence intensity of GFAP and C3 significantly decreased (P<0.01), while that of GFAP and S100A10 greatly increased (P<0.01). Furthermore, VEGF content exhibited a marked elevation (P<0.01). ConclusionTaohong Siwutang exerts a protective effect in rats with cerebral CIRI injury. The underlying mechanism is associated with the downregulation of the JAK2/STAT3 signaling pathway, promotion of A2-type astrocyte polarization, reduction of inflammatory factor release, and enhancement of VEGF production.
2.Protective Effect of Taohong Siwutang on Cerebral Ischemia-reperfusion Injury Based on A1/A2 Phenotype Transformation of Astrocytes Mediated by JAK2/STAT3 Pathway
Huifang WANG ; Xinru CHEN ; Mengyuan CHEN ; Xian ZHOU ; Lan HAN ; Weidong CHEN ; Zhaojie JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):25-34
ObjectiveTo investigate whether the effect of Taohong Siwutang on cerebral ischemia-reperfusion (CIRI) injury in rats is related to the regulation of astrocyte polarization and explore the related mechanism. MethodsEighty-four male SD rats were randomly assigned to the following groups: A sham operation group, a model group, Taohong Siwutang treatment groups (low dose, medium dose, and high dose), ligustrazine phosphate tablet (LPT) group, and AG490 group. All groups, except for the sham operation group, underwent middle cerebral artery occlusion/reperfusion (MCAO/R) modeling and were treated for seven days. The neurological impairment was evaluated using the Longa score. The volume of cerebral infarction was assessed through 2,3,5-triphenyltetrazolium chloride (TTC) staining. Real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) and Western blot analyses were performed to analyze the mRNA and protein expression levels of cortical complement 3 (C3), S100 calcium-binding protein A10 (S100A10), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3). Additionally, protein expression levels of vascular endothelial growth factor-A (VEGF-A) were assessed, and the mRNA expression levels of inflammatory factors, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), were evaluated. Glial fibrillary acidic protein (GFAP) and C3, S100A10 and Co-localization was detected via immunofluorescence double staining. Lastly, VEGF expression levels were measured using enzyme-linked immunosorbent assay (ELISA). ResultsCompared with the sham operation group, the model group showed a significant increase in cerebral infarction volume and neurological impairment (P<0.01). C3 protein levels were elevated, while S100A10 levels were decreased. Pathway-related markers were significantly upregulated (P<0.05, P<0.01), and VEGF-A protein levels were significantly reduced (P<0.01). The mRNA expression of inflammatory factors was significantly upregulated (P<0.01). Co-localization analysis showed significantly increased GFAP and C3 fluorescence intensity (P<0.01) and greatly decreased GFAP and S100A10 fluorescence intensity (P<0.01). Additionally, VEGF content was significantly elevated (P<0.01). Compared with the model group, medium- and high-dose Taohong Siwutang and LPT groups exhibited a significant reduction in cerebral infarction volume and neurological impairment (P<0.01). Groups treated with low, medium, and high doses of Taohong Siwutang and LPT group exhibited a decrease in C3 protein expression levels and an increase in S100A10 expression levels (P<0.01). In the high-dose Taohong Siwutang and AG490 groups, both protein and mRNA expression of C3 and pathway-related markers were significantly downregulated (P<0.05, P<0.01), while S100A10 expression and VEGF-A protein levels were significantly increased (P<0.01). Additionally, the mRNA expression levels of inflammatory factors were significantly reduced (P<0.01). The co-localization fluorescence intensity of GFAP and C3 significantly decreased (P<0.01), while that of GFAP and S100A10 greatly increased (P<0.01). Furthermore, VEGF content exhibited a marked elevation (P<0.01). ConclusionTaohong Siwutang exerts a protective effect in rats with cerebral CIRI injury. The underlying mechanism is associated with the downregulation of the JAK2/STAT3 signaling pathway, promotion of A2-type astrocyte polarization, reduction of inflammatory factor release, and enhancement of VEGF production.
3.Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19.
Xiaoyan LIU ; Zhe LI ; Shuai LIU ; Jing SUN ; Zhanghua CHEN ; Min JIANG ; Qingling ZHANG ; Yinghua WEI ; Xin WANG ; Yi-You HUANG ; Yinyi SHI ; Yanhui XU ; Huifang XIAN ; Fan BAI ; Changxing OU ; Bei XIONG ; Andrew M LEW ; Jun CUI ; Rongli FANG ; Hui HUANG ; Jincun ZHAO ; Xuechuan HONG ; Yuxia ZHANG ; Fuling ZHOU ; Hai-Bin LUO
Acta Pharmaceutica Sinica B 2020;10(7):1205-1215
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause acute respiratory distress syndrome, hypercoagulability, hypertension, and multiorgan dysfunction. Effective antivirals with safe clinical profile are urgently needed to improve the overall prognosis. In an analysis of a randomly collected cohort of 124 patients with COVID-19, we found that hypercoagulability as indicated by elevated concentrations of D-dimers was associated with disease severity. By virtual screening of a U.S. FDA approved drug library, we identified an anticoagulation agent dipyridamole (DIP) , which suppressed SARS-CoV-2 replication . In a proof-of-concept trial involving 31 patients with COVID-19, DIP supplementation was associated with significantly decreased concentrations of D-dimers ( < 0.05), increased lymphocyte and platelet recovery in the circulation, and markedly improved clinical outcomes in comparison to the control patients. In particular, all 8 of the DIP-treated severely ill patients showed remarkable improvement: 7 patients (87.5%) achieved clinical cure and were discharged from the hospitals while the remaining 1 patient (12.5%) was in clinical remission.